Entity Retrieval for Answering Entity-Centric Questions
- URL: http://arxiv.org/abs/2408.02795v1
- Date: Mon, 5 Aug 2024 19:23:20 GMT
- Title: Entity Retrieval for Answering Entity-Centric Questions
- Authors: Hassan S. Shavarani, Anoop Sarkar,
- Abstract summary: We propose a novel retrieval method which rather than relying on question-document similarity, depends on the salient entities within the question to identify the retrieval documents.
Our findings reveal that our method not only leads to more accurate answers to entity-centric questions but also operates more efficiently.
- Score: 4.327763441385372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The similarity between the question and indexed documents is a crucial factor in document retrieval for retrieval-augmented question answering. Although this is typically the only method for obtaining the relevant documents, it is not the sole approach when dealing with entity-centric questions. In this study, we propose Entity Retrieval, a novel retrieval method which rather than relying on question-document similarity, depends on the salient entities within the question to identify the retrieval documents. We conduct an in-depth analysis of the performance of both dense and sparse retrieval methods in comparison to Entity Retrieval. Our findings reveal that our method not only leads to more accurate answers to entity-centric questions but also operates more efficiently.
Related papers
- Optimization of Retrieval-Augmented Generation Context with Outlier Detection [0.0]
We focus on methods to reduce the size and improve the quality of the prompt context required for question-answering systems.
Our goal is to select the most semantically relevant documents, treating the discarded ones as outliers.
It was found that the greatest improvements were achieved with increasing complexity of the questions and answers.
arXiv Detail & Related papers (2024-07-01T15:53:29Z) - Generative Retrieval as Multi-Vector Dense Retrieval [71.75503049199897]
Generative retrieval generates identifiers of relevant documents in an end-to-end manner.
Prior work has demonstrated that generative retrieval with atomic identifiers is equivalent to single-vector dense retrieval.
We show that generative retrieval and multi-vector dense retrieval share the same framework for measuring the relevance to a query of a document.
arXiv Detail & Related papers (2024-03-31T13:29:43Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
We propose a curriculum sampling strategy that utilizes pseudo queries during training and progressively enhances the relevance between the generated query and the real query.
Experimental results on both in-domain and out-of-domain datasets demonstrate that our approach outperforms previous dense retrieval models.
arXiv Detail & Related papers (2022-12-18T15:57:46Z) - CODER: An efficient framework for improving retrieval through
COntextualized Document Embedding Reranking [11.635294568328625]
We present a framework for improving the performance of a wide class of retrieval models at minimal computational cost.
It utilizes precomputed document representations extracted by a base dense retrieval method.
It incurs a negligible computational overhead on top of any first-stage method at run time, allowing it to be easily combined with any state-of-the-art dense retrieval method.
arXiv Detail & Related papers (2021-12-16T10:25:26Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
We explore the feasibility of approximate exposing query identification (EQI) as a retrieval task by reversing the role of queries and documents in two classes of search systems.
We derive an evaluation metric to measure the quality of a ranking of exposing queries, as well as conducting an empirical analysis focusing on various practical aspects of approximate EQI.
arXiv Detail & Related papers (2021-10-14T20:19:27Z) - Improving Query Representations for Dense Retrieval with Pseudo
Relevance Feedback [29.719150565643965]
This paper proposes ANCE-PRF, a new query encoder that uses pseudo relevance feedback (PRF) to improve query representations for dense retrieval.
ANCE-PRF uses a BERT encoder that consumes the query and the top retrieved documents from a dense retrieval model, ANCE, and it learns to produce better query embeddings directly from relevance labels.
Analysis shows that the PRF encoder effectively captures the relevant and complementary information from PRF documents, while ignoring the noise with its learned attention mechanism.
arXiv Detail & Related papers (2021-08-30T18:10:26Z) - Answering Any-hop Open-domain Questions with Iterative Document
Reranking [62.76025579681472]
We propose a unified QA framework to answer any-hop open-domain questions.
Our method consistently achieves performance comparable to or better than the state-of-the-art on both single-hop and multi-hop open-domain QA datasets.
arXiv Detail & Related papers (2020-09-16T04:31:38Z) - Knowledge-Aided Open-Domain Question Answering [58.712857964048446]
We propose a knowledge-aided open-domain QA (KAQA) method which targets at improving relevant document retrieval and answer reranking.
During document retrieval, a candidate document is scored by considering its relationship to the question and other documents.
During answer reranking, a candidate answer is reranked using not only its own context but also the clues from other documents.
arXiv Detail & Related papers (2020-06-09T13:28:57Z) - Query Focused Multi-Document Summarization with Distant Supervision [88.39032981994535]
Existing work relies heavily on retrieval-style methods for estimating the relevance between queries and text segments.
We propose a coarse-to-fine modeling framework which introduces separate modules for estimating whether segments are relevant to the query.
We demonstrate that our framework outperforms strong comparison systems on standard QFS benchmarks.
arXiv Detail & Related papers (2020-04-06T22:35:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.