論文の概要: Algorithm-Informed Graph Neural Networks for Leakage Detection and Localization in Water Distribution Networks
- arxiv url: http://arxiv.org/abs/2408.02797v1
- Date: Mon, 5 Aug 2024 19:25:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 15:48:36.985546
- Title: Algorithm-Informed Graph Neural Networks for Leakage Detection and Localization in Water Distribution Networks
- Title(参考訳): 配水網における漏れ検出と局所化のためのアルゴリズムインフォームドグラフニューラルネットワーク
- Authors: Zepeng Zhang, Olga Fink,
- Abstract要約: 漏水は配水ネットワークの効率的かつ持続可能な管理にとって重要な課題である。
近年のアプローチでは、グラフベースのデータ駆動方式が採用されている。
本稿では,アルゴリズムインフォームドグラフニューラルネットワーク(AIGNN)を提案する。
- 参考スコア(独自算出の注目度): 6.675805308519987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting and localizing leakages is a significant challenge for the efficient and sustainable management of water distribution networks (WDN). Leveraging the inherent graph structure of WDNs, recent approaches have used graph-based data-driven methods. However, these methods often learn shortcuts that work well with in-distribution data but fail to generalize to out-of-distribution data. To address this limitation and inspired by the perfect generalization ability of classical algorithms, we propose an algorithm-informed graph neural network (AIGNN). Recognizing that WDNs function as flow networks, incorporating max-flow information can be beneficial for inferring pressures. In the proposed framework, we first train AIGNN to emulate the Ford-Fulkerson algorithm for solving max-flow problems. This algorithmic knowledge is then transferred to address the pressure estimation problem in WDNs. Two AIGNNs are deployed, one to reconstruct pressure based on the current measurements, and another to predict pressure based on previous measurements. Leakages are detected and localized by comparing the outputs of the reconstructor and the predictor. By pretraining AIGNNs to reason like algorithms, they are expected to extract more task-relevant and generalizable features. Experimental results demonstrate that the proposed algorithm-informed approach achieves superior results with better generalization ability compared to GNNs that do not incorporate algorithmic knowledge.
- Abstract(参考訳): 水分散ネットワーク(WDN)の効率的かつ持続可能な管理には,漏れの検出と位置決めが重要な課題である。
WDNの固有のグラフ構造を利用して、近年のアプローチではグラフベースのデータ駆動方式が採用されている。
しかし、これらの手法は、分配データとうまく機能するショートカットを学習するが、分配データの一般化に失敗することが多い。
この制限に対処し、古典的アルゴリズムの完全一般化能力に着想を得たアルゴリズムインフォームドグラフニューラルネットワーク(AIGNN)を提案する。
WDNがフローネットワークとして機能していることを認識し、最大フロー情報を組み込むことは、圧力を推測するのに有益である。
提案フレームワークでは、まずAIGNNをトレーニングし、最大フロー問題を解決するためにFord-Fulkersonアルゴリズムをエミュレートする。
このアルゴリズム知識は、WDNの圧力推定問題に対処するために転送される。
2つのAIGNNが展開され、1つは現在の測定値に基づいて圧力を再構築し、もう1つは以前の測定値に基づいて圧力を予測する。
再構成器と予測器の出力を比較して漏洩を検出する。
アルゴリズムのような推論のためにAIGNNを事前訓練することにより、よりタスク関連で一般化可能な特徴を抽出することが期待されている。
実験により,提案手法はアルゴリズム知識を組み込まないGNNと比較して,より優れた一般化能力で優れた結果が得られることが示された。
関連論文リスト
- Graph Convolutional Branch and Bound [1.8966938152549224]
本稿では,最適化パイプラインにおけるディープラーニングモデルの有効性を示す。
この文脈では、ニューラルネットワークを利用して、価値ある情報を素早く取得することができる。
論文 参考訳(メタデータ) (2024-06-05T09:42:43Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
本稿では,フローフィールドデータの超高分解能化のための特徴強調型ニューラルインシシット表現(FFEINR)を提案する。
モデル構造とサンプリング分解能の観点から、暗黙のニューラル表現を最大限に活用することができる。
FFEINRのトレーニングプロセスは、入力層に機能拡張を導入することで容易になる。
論文 参考訳(メタデータ) (2023-08-24T02:28:18Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Neural Algorithmic Reasoning with Causal Regularisation [18.299363749150093]
我々は重要な観察を行う: アルゴリズムが特定の中間計算を同一に実行する多くの異なる入力が存在する。
この洞察により、アルゴリズムの中間軌道が与えられた場合、ターゲットアルゴリズムが全く同じ次の軌道ステップを持つような入力を生成するデータ拡張手順を開発することができる。
我々は、Hint-Relicと呼ばれる結果の手法が、推論器のOOD一般化能力を改善することを証明した。
論文 参考訳(メタデータ) (2023-02-20T19:41:15Z) - Unsupervised Learning of Initialization in Deep Neural Networks via
Maximum Mean Discrepancy [74.34895342081407]
本稿では,入力データに対する優れた初期化を求めるための教師なしアルゴリズムを提案する。
まず、パラメータ空間における各パラメータ構成が、d-way分類の特定の下流タスクに対応することに気付く。
次に、学習の成功は、初期パラメータの近傍で下流タスクがいかに多様であるかに直接関連していると推測する。
論文 参考訳(メタデータ) (2023-02-08T23:23:28Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
ニューラルネットワーク推論タスクのOOD一般化について検討する。
目標は、ディープニューラルネットワークを使用して入出力ペアからアルゴリズムを学ぶことである。
論文 参考訳(メタデータ) (2022-11-01T18:33:20Z) - Deep learning via message passing algorithms based on belief propagation [2.931240348160871]
本稿では,局所的なエントロピー分布に偏りを持つ強化場を有するBPベースのメッセージパッシングアルゴリズムのファミリについて述べる。
これらのアルゴリズムは、SGDにインスパイアされたソリューションに匹敵するパフォーマンスで、離散重みとアクティベーションを持つ多層ニューラルネットワークをトレーニングすることができる。
論文 参考訳(メタデータ) (2021-10-27T16:52:26Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
我々は,情報理論に根ざし,計算神経科学に発達した効率的な符号化原理を採用することを提案する。
スパース符号化は出力信号のエントロピーを効果的に最大化できることを示す。
公開画像分類データセットを用いた実験により,提案アルゴリズムでスクラッチから学習した構造を用いて,最も優れた専門家設計構造に匹敵する分類精度が得られることを示した。
論文 参考訳(メタデータ) (2021-05-27T12:27:24Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。