Training a multilayer dynamical spintronic network with standard machine learning tools to perform time series classification
- URL: http://arxiv.org/abs/2408.02835v2
- Date: Wed, 7 Aug 2024 08:09:02 GMT
- Title: Training a multilayer dynamical spintronic network with standard machine learning tools to perform time series classification
- Authors: Erwan Plouet, Dédalo Sanz-Hernández, Aymeric Vecchiola, Julie Grollier, Frank Mizrahi,
- Abstract summary: We propose to implement a recurrent neural network in hardware using spintronic oscillators as dynamical neurons.
We solve the sequential digits classification task with $89.83pm2.91%$ accuracy, as good as the equivalent software network.
- Score: 0.9786690381850356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to process time-series at low energy cost is critical for many applications. Recurrent neural network, which can perform such tasks, are computationally expensive when implementing in software on conventional computers. Here we propose to implement a recurrent neural network in hardware using spintronic oscillators as dynamical neurons. Using numerical simulations, we build a multi-layer network and demonstrate that we can use backpropagation through time (BPTT) and standard machine learning tools to train this network. Leveraging the transient dynamics of the spintronic oscillators, we solve the sequential digits classification task with $89.83\pm2.91~\%$ accuracy, as good as the equivalent software network. We devise guidelines on how to choose the time constant of the oscillators as well as hyper-parameters of the network to adapt to different input time scales.
Related papers
- NEAR: A Training-Free Pre-Estimator of Machine Learning Model Performance [0.0]
We propose a zero-cost proxy Network Expressivity by Activation Rank (NEAR) to identify the optimal neural network without training.
We demonstrate the cutting-edge correlation between this network score and the model accuracy on NAS-Bench-101 and NATS-Bench-SSS/TSS.
arXiv Detail & Related papers (2024-08-16T14:38:14Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Noise-injected analog Ising machines enable ultrafast statistical
sampling and machine learning [0.0]
We introduce a universal concept to achieve ultrafast statistical sampling with Ising machines by injecting analog noise.
With an opto-electronic Ising machine, we demonstrate that this can be used for accurate sampling of Boltzmann distributions.
We find that Ising machines can perform statistical sampling orders-of-magnitude faster than software-based methods.
arXiv Detail & Related papers (2021-12-21T21:33:45Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
We study the interplay between pruning and quantization during the training of neural networks for ultra low latency applications.
We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task.
arXiv Detail & Related papers (2021-02-22T19:00:05Z) - Machine Learning Link Inference of Noisy Delay-coupled Networks with
Opto-Electronic Experimental Tests [1.0766846340954257]
We devise a machine learning technique to solve the general problem of inferring network links that have time-delays.
We first train a type of machine learning system known as reservoir computing to mimic the dynamics of the unknown network.
We formulate and test a technique that uses the trained parameters of the reservoir system output layer to deduce an estimate of the unknown network structure.
arXiv Detail & Related papers (2020-10-29T00:24:13Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
Differentiable neural computers extend artificial neural networks with an explicit memory without interference.
We achieve some of the computational capabilities of differentiable neural computers with a model that can be trained very efficiently.
arXiv Detail & Related papers (2020-09-14T12:01:30Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.