Wiping out the limitations of Large Language Models -- A Taxonomy for Retrieval Augmented Generation
- URL: http://arxiv.org/abs/2408.02854v3
- Date: Mon, 12 Aug 2024 16:44:05 GMT
- Title: Wiping out the limitations of Large Language Models -- A Taxonomy for Retrieval Augmented Generation
- Authors: Mahei Manhai Li, Irina Nikishina, Özge Sevgili, Martin Semmann,
- Abstract summary: This research aims to create a taxonomy to conceptualize a comprehensive overview of Retrieval-Augmented Generation (RAG) applications.
To the best of our knowledge, no RAG application have been developed so far.
- Score: 0.46498278084317696
- License:
- Abstract: Current research on RAGs is distributed across various disciplines, and since the technology is evolving very quickly, its unit of analysis is mostly on technological innovations, rather than applications in business contexts. Thus, in this research, we aim to create a taxonomy to conceptualize a comprehensive overview of the constituting characteristics that define RAG applications, facilitating the adoption of this technology in the IS community. To the best of our knowledge, no RAG application taxonomies have been developed so far. We describe our methodology for developing the taxonomy, which includes the criteria for selecting papers, an explanation of our rationale for employing a Large Language Model (LLM)-supported approach to extract and identify initial characteristics, and a concise overview of our systematic process for conceptualizing the taxonomy. Our systematic taxonomy development process includes four iterative phases designed to refine and enhance our understanding and presentation of RAG's core dimensions. We have developed a total of five meta-dimensions and sixteen dimensions to comprehensively capture the concept of Retrieval-Augmented Generation (RAG) applications. When discussing our findings, we also detail the specific research areas and pose key research questions to guide future information system researchers as they explore the emerging topics of RAG systems.
Related papers
- Graph Foundation Models for Recommendation: A Comprehensive Survey [55.70529188101446]
Large language models (LLMs) are designed to process and comprehend natural language, making both approaches highly effective and widely adopted.
Recent research has focused on graph foundation models (GFMs)
GFMs integrate the strengths of GNNs and LLMs to model complex RS problems more efficiently by leveraging the graph-based structure of user-item relationships alongside textual understanding.
arXiv Detail & Related papers (2025-02-12T12:13:51Z) - Enhancing Retrieval-Augmented Generation: A Study of Best Practices [16.246719783032436]
We develop advanced RAG system designs that incorporate query expansion, various novel retrieval strategies, and a novel Contrastive In-Context Learning RAG.
Our study systematically investigates key factors, including language model size, prompt design, document chunk size, knowledge base size, retrieval stride, query expansion techniques, and Focus Mode retrieving relevant context at sentence-level.
Our findings offer actionable insights for developing RAG systems, striking a balance between contextual richness and retrieval-generation efficiency.
arXiv Detail & Related papers (2025-01-13T15:07:55Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.
We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - Towards Optimizing a Retrieval Augmented Generation using Large Language Model on Academic Data [4.322454918650575]
We focus on data retrieval, specifically targeting various study programs at a large technical university.
By exploring the integration of both open-source (e.g., Llama2, Mistral) and closed-source (GPT-3.5 and GPT-4) Large Language Models, we offer valuable insights into the application and optimization of RAG frameworks in domain-specific contexts.
arXiv Detail & Related papers (2024-11-13T08:43:37Z) - CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation [68.81271028921647]
We introduce CORAL, a benchmark designed to assess RAG systems in realistic multi-turn conversational settings.
CORAL includes diverse information-seeking conversations automatically derived from Wikipedia.
It supports three core tasks of conversational RAG: passage retrieval, response generation, and citation labeling.
arXiv Detail & Related papers (2024-10-30T15:06:32Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAG combines retrieval mechanisms with generative language models to enhance the accuracy of outputs.
Recent research breakthroughs are discussed, highlighting novel methods for improving retrieval efficiency.
Future research directions are proposed, focusing on improving the robustness of RAG models.
arXiv Detail & Related papers (2024-10-03T22:29:47Z) - A Survey on Retrieval-Augmented Text Generation for Large Language Models [1.4579344926652844]
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements.
This paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation.
It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies.
arXiv Detail & Related papers (2024-04-17T01:27:42Z) - Improving Retrieval in Theme-specific Applications using a Corpus
Topical Taxonomy [52.426623750562335]
We introduce ToTER (Topical taxonomy Enhanced Retrieval) framework.
ToTER identifies the central topics of queries and documents with the guidance of the taxonomy, and exploits their topical relatedness to supplement missing contexts.
As a plug-and-play framework, ToTER can be flexibly employed to enhance various PLM-based retrievers.
arXiv Detail & Related papers (2024-03-07T02:34:54Z) - Creating a Fine Grained Entity Type Taxonomy Using LLMs [0.0]
This study investigates the potential of GPT-4 and its advanced iteration, GPT-4 Turbo, in autonomously developing a detailed entity type taxonomy.
Our objective is to construct a comprehensive taxonomy, starting from a broad classification of entity types.
This classification is then progressively refined through iterative prompting techniques, leveraging GPT-4's internal knowledge base.
arXiv Detail & Related papers (2024-02-19T21:32:19Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.