CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation
- URL: http://arxiv.org/abs/2410.23090v1
- Date: Wed, 30 Oct 2024 15:06:32 GMT
- Title: CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation
- Authors: Yiruo Cheng, Kelong Mao, Ziliang Zhao, Guanting Dong, Hongjin Qian, Yongkang Wu, Tetsuya Sakai, Ji-Rong Wen, Zhicheng Dou,
- Abstract summary: We introduce CORAL, a benchmark designed to assess RAG systems in realistic multi-turn conversational settings.
CORAL includes diverse information-seeking conversations automatically derived from Wikipedia.
It supports three core tasks of conversational RAG: passage retrieval, response generation, and citation labeling.
- Score: 68.81271028921647
- License:
- Abstract: Retrieval-Augmented Generation (RAG) has become a powerful paradigm for enhancing large language models (LLMs) through external knowledge retrieval. Despite its widespread attention, existing academic research predominantly focuses on single-turn RAG, leaving a significant gap in addressing the complexities of multi-turn conversations found in real-world applications. To bridge this gap, we introduce CORAL, a large-scale benchmark designed to assess RAG systems in realistic multi-turn conversational settings. CORAL includes diverse information-seeking conversations automatically derived from Wikipedia and tackles key challenges such as open-domain coverage, knowledge intensity, free-form responses, and topic shifts. It supports three core tasks of conversational RAG: passage retrieval, response generation, and citation labeling. We propose a unified framework to standardize various conversational RAG methods and conduct a comprehensive evaluation of these methods on CORAL, demonstrating substantial opportunities for improving existing approaches.
Related papers
- Do RAG Systems Cover What Matters? Evaluating and Optimizing Responses with Sub-Question Coverage [74.70255719194819]
We introduce a novel framework based on sub-question coverage, which measures how well a RAG system addresses different facets of a question.
We use this framework to evaluate three commercial generative answer engines: You.com, Perplexity AI, and Bing Chat.
We find that while all answer engines cover core sub-questions more often than background or follow-up ones, they still miss around 50% of core sub-questions.
arXiv Detail & Related papers (2024-10-20T22:59:34Z) - CoFE-RAG: A Comprehensive Full-chain Evaluation Framework for Retrieval-Augmented Generation with Enhanced Data Diversity [23.48167670445722]
Retrieval-Augmented Generation (RAG) aims to generate more accurate and reliable answers with the help of the retrieved context from external knowledge sources.
evaluating these systems remains a crucial research area due to the following issues.
We propose a Comprehensive Full-chain Evaluation (CoFE-RAG) framework to facilitate thorough evaluation across the entire RAG pipeline.
arXiv Detail & Related papers (2024-10-16T05:20:32Z) - Adaptive Retrieval-Augmented Generation for Conversational Systems [25.35137570524043]
This study investigates the need for each turn of system response to be augmented with external knowledge.
By leveraging human judgements on the binary choice of adaptive augmentation, we develop RAGate, a gating model.
arXiv Detail & Related papers (2024-07-31T16:04:03Z) - Retrieval Meets Reasoning: Even High-school Textbook Knowledge Benefits Multimodal Reasoning [49.3242278912771]
We introduce a novel multimodal RAG framework named RMR (Retrieval Meets Reasoning)
The RMR framework employs a bi-modal retrieval module to identify the most relevant question-answer pairs.
It significantly boosts the performance of various vision-language models across a spectrum of benchmark datasets.
arXiv Detail & Related papers (2024-05-31T14:23:49Z) - Boosting Conversational Question Answering with Fine-Grained Retrieval-Augmentation and Self-Check [25.63538452425097]
We propose a conversation-level RAG approach, which incorporates fine-grained retrieval augmentation and self-check for conversational question answering.
In particular, our approach consists of three components, namely conversational question refiner, fine-grained retriever and self-check based response generator.
arXiv Detail & Related papers (2024-03-27T04:20:18Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
Current knowledge-grounded dialogue systems often fail to align the generated responses with human-preferred qualities.
We propose Polished & Informed Candidate Scoring (PICK), a generation re-scoring framework.
We demonstrate the effectiveness of PICK in generating responses that are more faithful while keeping them relevant to the dialogue history.
arXiv Detail & Related papers (2023-09-19T08:27:09Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
We tackle conversational passage retrieval (ConvPR) with query reformulation integrated into a multi-stage ad-hoc IR system.
We propose two conversational query reformulation (CQR) methods: (1) term importance estimation and (2) neural query rewriting.
For the former, we expand conversational queries using important terms extracted from the conversational context with frequency-based signals.
For the latter, we reformulate conversational queries into natural, standalone, human-understandable queries with a pretrained sequence-tosequence model.
arXiv Detail & Related papers (2020-05-05T14:30:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.