LLMs as Probabilistic Minimally Adequate Teachers for DFA Learning
- URL: http://arxiv.org/abs/2408.02999v1
- Date: Tue, 6 Aug 2024 07:12:09 GMT
- Title: LLMs as Probabilistic Minimally Adequate Teachers for DFA Learning
- Authors: Lekai Chen, Ashutosh Trivedi, Alvaro Velasquez,
- Abstract summary: The emergence of intelligence in large language models (LLMs) has inspired investigations into their integration into automata learning.
This paper introduces the probabilistic Minimally Adequate Teacher (pMAT) formulation.
We develop techniques to improve answer accuracy and ensure the correctness of the learned automata.
- Score: 11.037017229299607
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The emergence of intelligence in large language models (LLMs) has inspired investigations into their integration into automata learning. This paper introduces the probabilistic Minimally Adequate Teacher (pMAT) formulation, which leverages a probabilistic oracle that could give persistent errors randomly during answering the membership queries for deterministic finite automata (DFA) learning. Given the tendency of LLMs to produce hallucinatory content, we have developed techniques to improve answer accuracy and ensure the correctness of the learned automata. We propose the $\mathtt{Discrimination}$ prompt as well as the $\mathtt{Verification}$ prompt and explore their advantages over common prompts. Additionally, we compare DFA learning performance between the TTT algorithm and common active learning algorithms. To address the exponential number of persistent errors, we implement a dynamic query cache refinement algorithm that identifies and corrects conflicting queries by combining the active and passive learning algorithms. The empirical results demonstrate the robustness and efficiency of our approach, providing a theoretical foundation for automata learning with LLMs in the loop.
Related papers
- Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - A Training Data Recipe to Accelerate A* Search with Language Models [3.037409201025504]
Large Language Models (LLMs) with search algorithms like A* holds the promise of enhanced reasoning and scalable inference.
We empirically disentangle the requirements of A* search algorithm from the requirements of the LLM to generalise on this task.
Our technique reduces the number of iterations required to find the solutions by up to 15x, with a wall-clock speed-up of search up to 5x.
arXiv Detail & Related papers (2024-07-13T19:21:44Z) - LLMs can learn self-restraint through iterative self-reflection [57.26854891567574]
Large Language Models (LLMs) must be capable of dynamically adapting their behavior based on their level of knowledge and uncertainty associated with specific topics.
This adaptive behavior, which we refer to as self-restraint, is non-trivial to teach.
We devise a utility function that can encourage the model to produce responses only when it is confident in them.
arXiv Detail & Related papers (2024-05-15T13:35:43Z) - Provably Efficient Representation Learning with Tractable Planning in
Low-Rank POMDP [81.00800920928621]
We study representation learning in partially observable Markov Decision Processes (POMDPs)
We first present an algorithm for decodable POMDPs that combines maximum likelihood estimation (MLE) and optimism in the face of uncertainty (OFU)
We then show how to adapt this algorithm to also work in the broader class of $gamma$-observable POMDPs.
arXiv Detail & Related papers (2023-06-21T16:04:03Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z) - MathPrompter: Mathematical Reasoning using Large Language Models [7.953723258038284]
Large Language Models (LLMs) have limited performance when solving arithmetic reasoning tasks.
MathPrompter uses the Zero-shot chain-of-thought prompting technique to generate multiple Algebraic expressions or Python functions to solve the same math problem in different ways.
arXiv Detail & Related papers (2023-03-04T04:43:49Z) - Learning Hidden Markov Models Using Conditional Samples [72.20944611510198]
This paper is concerned with the computational complexity of learning the Hidden Markov Model (HMM)
In this paper, we consider an interactive access model, in which the algorithm can query for samples from the conditional distributions of the HMMs.
Specifically, we obtain efficient algorithms for learning HMMs in settings where we have query access to the exact conditional probabilities.
arXiv Detail & Related papers (2023-02-28T16:53:41Z) - Learning to Ask Conversational Questions by Optimizing Levenshtein
Distance [83.53855889592734]
We introduce a Reinforcement Iterative Sequence Editing (RISE) framework that optimize the minimum Levenshtein distance (MLD) through explicit editing actions.
RISE is able to pay attention to tokens that are related to conversational characteristics.
Experimental results on two benchmark datasets show that RISE significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-06-30T08:44:19Z) - Learning Halfspaces With Membership Queries [0.0]
In some cases, active learning can yield an exponential gain in the number of samples the algorithm needs to see.
We show that the algorithm works well in practice, and significantly outperforms uncertainty sampling.
arXiv Detail & Related papers (2020-12-20T18:02:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.