LLMs can learn self-restraint through iterative self-reflection
- URL: http://arxiv.org/abs/2405.13022v2
- Date: Wed, 3 Jul 2024 14:46:52 GMT
- Title: LLMs can learn self-restraint through iterative self-reflection
- Authors: Alexandre Piché, Aristides Milios, Dzmitry Bahdanau, Chris Pal,
- Abstract summary: Large Language Models (LLMs) must be capable of dynamically adapting their behavior based on their level of knowledge and uncertainty associated with specific topics.
This adaptive behavior, which we refer to as self-restraint, is non-trivial to teach.
We devise a utility function that can encourage the model to produce responses only when it is confident in them.
- Score: 57.26854891567574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order to be deployed safely, Large Language Models (LLMs) must be capable of dynamically adapting their behavior based on their level of knowledge and uncertainty associated with specific topics. This adaptive behavior, which we refer to as self-restraint, is non-trivial to teach since it depends on the internal knowledge of an LLM. By default, LLMs are trained to maximize the next token likelihood, which does not teach the model to modulate its answer based on its level of uncertainty. In order to learn self-restraint, we devise a utility function that can encourage the model to produce responses only when it is confident in them. This utility function can be used to score generation of different length and abstention. To optimize this function, we introduce ReSearch, a process of "self-reflection" consisting of iterative self-prompting and self-evaluation. We use the ReSearch algorithm to generate synthetic data on which we finetune our models. Compared to their original versions, our resulting models generate fewer \emph{hallucinations} overall at no additional inference cost, for both known and unknown topics, as the model learns to selectively restrain itself. In addition, our method elegantly incorporates the ability to abstain by augmenting the samples generated by the model during the search procedure with an answer expressing abstention.
Related papers
- Large Language Models can be Strong Self-Detoxifiers [82.6594169242814]
Self-disciplined Autoregressive Sampling (SASA) is a lightweight controlled decoding algorithm for toxicity reduction of large language models (LLMs)
SASA tracks the margin of the current output to steer the generation away from the toxic subspace, by adjusting the autoregressive sampling strategy.
evaluated on LLMs of different scale and nature, namely Llama-3.1-Instruct (8B), Llama-2 (7B), and GPT2-L models with the RealToxicityPrompts, BOLD, and AttaQ benchmarks.
arXiv Detail & Related papers (2024-10-04T17:45:15Z) - Recursive Introspection: Teaching Language Model Agents How to Self-Improve [30.086494067593268]
We develop RISE: Recursive IntroSpEction, an approach for fine-tuning large language models.
Our experiments show that RISE enables Llama2, Llama3, and Mistral models to improve themselves with more turns on math reasoning tasks.
arXiv Detail & Related papers (2024-07-25T17:35:59Z) - Estimating Knowledge in Large Language Models Without Generating a Single Token [12.913172023910203]
Current methods to evaluate knowledge in large language models (LLMs) query the model and then evaluate its generated responses.
In this work, we ask whether evaluation can be done before the model has generated any text.
Experiments with a variety of LLMs show that KEEN, a simple probe trained over internal subject representations, succeeds at both tasks.
arXiv Detail & Related papers (2024-06-18T14:45:50Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation [71.91287418249688]
Large language models (LLMs) often struggle with factual inaccuracies, even when they hold relevant knowledge.
We leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality.
We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks.
arXiv Detail & Related papers (2024-02-14T15:52:42Z) - Into the Unknown: Self-Learning Large Language Models [0.0]
We introduce a concept called Point in the Unknown (PiU) to identify atomic knowledge unknown to a model.
We develop evaluation metrics to gauge an LLM's self-learning capability.
arXiv Detail & Related papers (2024-02-14T12:56:58Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - SELF: Self-Evolution with Language Feedback [68.6673019284853]
'SELF' (Self-Evolution with Language Feedback) is a novel approach to advance large language models.
It enables LLMs to self-improve through self-reflection, akin to human learning processes.
Our experiments in mathematics and general tasks demonstrate that SELF can enhance the capabilities of LLMs without human intervention.
arXiv Detail & Related papers (2023-10-01T00:52:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.