Extend Model Merging from Fine-Tuned to Pre-Trained Large Language Models via Weight Disentanglement
- URL: http://arxiv.org/abs/2408.03092v1
- Date: Tue, 6 Aug 2024 10:46:46 GMT
- Title: Extend Model Merging from Fine-Tuned to Pre-Trained Large Language Models via Weight Disentanglement
- Authors: Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, Yongbin Li,
- Abstract summary: We make a pioneering effort to broaden the applicability of merging techniques from FT to PT LLMs.
We introduce an approach based on WeIght DisENtanglement (WIDEN) to effectively extend the merging scope.
We merge Qwen1.5-Chat (an FT LLM with instruction-following skills) with Sailor (a PT LLM with multilingual abilities) across 7B and 14B model scales.
- Score: 72.97553348776425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Merging Large Language Models (LLMs) aims to amalgamate multiple homologous LLMs into one with all the capabilities. Ideally, any LLMs sharing the same backbone should be mergeable, irrespective of whether they are Fine-Tuned (FT) with minor parameter changes or Pre-Trained (PT) with substantial parameter shifts. However, existing methods often manually assign the model importance, rendering them feasible only for LLMs with similar parameter alterations, such as multiple FT LLMs. The diverse parameter changed ranges between FT and PT LLMs pose challenges for current solutions in empirically determining the optimal combination. In this paper, we make a pioneering effort to broaden the applicability of merging techniques from FT to PT LLMs. We initially examine the efficacy of current methods in merging FT and PT LLMs, discovering that they struggle to deal with PT LLMs. Subsequently, we introduce an approach based on WeIght DisENtanglement (WIDEN) to effectively extend the merging scope, which first disentangles model weights into magnitude and direction components, and then performs adaptive fusion by considering their respective contributions. In the experiments, we merge Qwen1.5-Chat (an FT LLM with instruction-following skills) with Sailor (a PT LLM with multilingual abilities) across 7B and 14B model scales. Results reveal that: (1) existing solutions usually fail when merging Sailor, either losing both abilities or only retaining instruction-following skills; (2) WIDEN successfully injects the multilingual abilities of Sailor into Qwen1.5-Chat and make it proficient in Southeast Asian languages, achieving enhancements in the fundamental capabilities. In light of previous research, we also merge multiple 13B FT LLMs and observe that WIDEN achieves a balanced amalgamation of instruction following, mathematical reasoning, and code generation skills.
Related papers
- LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
We propose a novel framework to transfer knowledge from l-MLLM to s-MLLM.
Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM.
We also propose a three-stage training scheme to fully exploit the potential of s-MLLM.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration [10.970637831760136]
Speculative decoding (SD) has emerged as a widely used paradigm to accelerate the inference of large language models (LLMs)
We introduce SWIFT, an on-the-fly self-speculative decoding algorithm that adaptively selects intermediate layers of LLMs to skip during inference.
We show that SWIFT can achieve over a 1.3x-1.6x speedup while preserving the original distribution of the generated text.
arXiv Detail & Related papers (2024-10-09T14:15:30Z) - PAFT: A Parallel Training Paradigm for Effective LLM Fine-Tuning [17.73193523921637]
Large language models (LLMs) have shown remarkable abilities in diverse natural language processing (NLP) tasks.
LLMs generally undergo supervised fine-tuning (SFT) followed by preference alignment to be usable in downstream applications.
This paper introduces PAFT, a new PArallel training paradigm for effective LLM Fine-Tuning.
arXiv Detail & Related papers (2024-06-25T20:11:37Z) - Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models [79.46938238953916]
Fine-tuning large language models (LLMs) to diverse applications is crucial to meet complex demands.
Recent studies suggest decomposing a fine-tuned LLM into a base model and corresponding delta weights, which are then compressed using low-rank or low-bit approaches to reduce costs.
In this work, we observe that existing low-rank and low-bit compression methods can significantly harm the model performance for task-specific fine-tuned LLMs.
arXiv Detail & Related papers (2024-06-13T07:57:27Z) - Pack of LLMs: Model Fusion at Test-Time via Perplexity Optimization [18.73637736606997]
Pack of LLMs (PackLLM) is an effective method for test-time fusion that leverages each LLM's expertise, given an input prompt.
We conduct experiments with over 100 total Large Language Models (LLMs) on a diverse set of tasks.
PackLLM outperforms test-time fusion baselines by 1.89% accuracy points.
arXiv Detail & Related papers (2024-04-17T16:24:07Z) - Knowledge Fusion of Chat LLMs: A Preliminary Technical Report [51.0178356903925]
We extend the FuseLLM framework to realize the fusion of chat LLMs, resulting in FusionChat.
We undertake knowledge fusion for structurally and scale-varied source LLMs to derive multiple target LLMs of identical structure and size via lightweight fine-tuning.
We validate our approach using three prominent chat LLMs with diverse architectures and scales, namely NH2-Mixtral-8x7B, NH2-Solar-10.7B, and OpenChat-3.5-7B.
arXiv Detail & Related papers (2024-02-25T15:11:58Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.