Pack of LLMs: Model Fusion at Test-Time via Perplexity Optimization
- URL: http://arxiv.org/abs/2404.11531v1
- Date: Wed, 17 Apr 2024 16:24:07 GMT
- Title: Pack of LLMs: Model Fusion at Test-Time via Perplexity Optimization
- Authors: Costas Mavromatis, Petros Karypis, George Karypis,
- Abstract summary: Pack of LLMs (PackLLM) is an effective method for test-time fusion that leverages each LLM's expertise, given an input prompt.
We conduct experiments with over 100 total Large Language Models (LLMs) on a diverse set of tasks.
PackLLM outperforms test-time fusion baselines by 1.89% accuracy points.
- Score: 18.73637736606997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fusing knowledge from multiple Large Language Models (LLMs) can combine their diverse strengths to achieve improved performance on a given task. However, current fusion approaches either rely on learning-based fusers that do not generalize to new LLMs, or do not take into account how well each LLM understands the input. In this work, we study LLM fusion at test-time, which enables leveraging knowledge from arbitrary user-specified LLMs during inference. We introduce Pack of LLMs (PackLLM), an effective method for test-time fusion that leverages each LLM's expertise, given an input prompt. PackLLM performs model fusion by solving an optimization problem for determining each LLM's importance, so that perplexity over the input prompt is minimized. First, our simple PackLLM-sim variant validates that perplexity is a good indicator for measuring each LLM's expertise. Second, our PackLLM-opt variant approximately solves the perplexity minimization problem via a greedy algorithm. The derived importance weights are used to combine the LLMs during inference. We conduct experiments with over 100 total LLMs on a diverse set of tasks. Experimental results show that (i) perplexity is a reliable measure for LLM fusion, (ii) PackLLM outperforms test-time fusion baselines by 1.89% accuracy points, and (iii) PackLLM can leverage new LLMs to improve performance over learning-based fusion approaches by 3.92-11.94% accuracy points.
Related papers
- LLM-TOPLA: Efficient LLM Ensemble by Maximising Diversity [7.945893812374361]
We introduce the focal diversity metric to capture the diversity-performance correlation among component LLMs of an ensemble.
We develop a diversity-optimized ensemble pruning algorithm to select the top-k sub-ensembles from a pool of $N$ base LLMs.
Our pruning method recommends top-performing LLM subensembles of size $S$, often much smaller than $N$.
arXiv Detail & Related papers (2024-10-04T22:31:15Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
Large language models (LLMs) have gained increased popularity due to their remarkable success across various tasks.
However, individual LLMs have limitations when applied to complex tasks because of such factors as training biases, model sizes, and the datasets used.
We introduce SelectLLM, a novel algorithm that directs input queries to the most suitable subset of LLMs from a large pool.
arXiv Detail & Related papers (2024-08-16T06:11:21Z) - Extend Model Merging from Fine-Tuned to Pre-Trained Large Language Models via Weight Disentanglement [72.97553348776425]
We make a pioneering effort to broaden the applicability of merging techniques from FT to PT LLMs.
We introduce an approach based on WeIght DisENtanglement (WIDEN) to effectively extend the merging scope.
We merge Qwen1.5-Chat (an FT LLM with instruction-following skills) with Sailor (a PT LLM with multilingual abilities) across 7B and 14B model scales.
arXiv Detail & Related papers (2024-08-06T10:46:46Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
Large language models (LLMs) have revolutionized the field of AI, demonstrating unprecedented capacity across various tasks.
In this paper, we propose an efficient LLM inference pipeline that harnesses the power of LLMs.
arXiv Detail & Related papers (2023-05-22T15:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.