Inference Optimizations for Large Language Models: Effects, Challenges, and Practical Considerations
- URL: http://arxiv.org/abs/2408.03130v1
- Date: Tue, 6 Aug 2024 12:07:32 GMT
- Title: Inference Optimizations for Large Language Models: Effects, Challenges, and Practical Considerations
- Authors: Leo Donisch, Sigurd Schacht, Carsten Lanquillon,
- Abstract summary: Large language models are ubiquitous in natural language processing because they can adapt to new tasks without retraining.
This literature review focuses on various techniques for reducing resource requirements and compressing large language models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models are ubiquitous in natural language processing because they can adapt to new tasks without retraining. However, their sheer scale and complexity present unique challenges and opportunities, prompting researchers and practitioners to explore novel model training, optimization, and deployment methods. This literature review focuses on various techniques for reducing resource requirements and compressing large language models, including quantization, pruning, knowledge distillation, and architectural optimizations. The primary objective is to explore each method in-depth and highlight its unique challenges and practical applications. The discussed methods are categorized into a taxonomy that presents an overview of the optimization landscape and helps navigate it to understand the research trajectory better.
Related papers
- A Survey of Small Language Models [104.80308007044634]
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources.
We present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques.
arXiv Detail & Related papers (2024-10-25T23:52:28Z) - Abstractive Text Summarization: State of the Art, Challenges, and Improvements [6.349503549199403]
This review takes a comprehensive approach encompassing state-of-the-art methods, challenges, solutions, comparisons, limitations and charts out future improvements.
The paper highlights challenges such as inadequate meaning representation, factual consistency, controllable text summarization, cross-lingual summarization, and evaluation metrics.
arXiv Detail & Related papers (2024-09-04T03:39:23Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
Model merging is an efficient empowerment technique in the machine learning community.
There is a significant gap in the literature regarding a systematic and thorough review of these techniques.
arXiv Detail & Related papers (2024-08-14T16:58:48Z) - Learn Beyond The Answer: Training Language Models with Reflection for Mathematical Reasoning [59.98430756337374]
Supervised fine-tuning enhances the problem-solving abilities of language models across various mathematical reasoning tasks.
Our work introduces a novel technique aimed at cultivating a deeper understanding of the training problems at hand.
We propose reflective augmentation, a method that embeds problem reflection into each training instance.
arXiv Detail & Related papers (2024-06-17T19:42:22Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - A Systematic Survey of Prompt Engineering in Large Language Models:
Techniques and Applications [11.568575664316143]
This paper provides a structured overview of recent advancements in prompt engineering, categorized by application area.
We provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized.
This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.
arXiv Detail & Related papers (2024-02-05T19:49:13Z) - Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models [33.50873478562128]
Large Language Models (LLMs) bring forth challenges in the high consumption of computational, memory, energy, and financial resources.
This survey aims to systematically address these challenges by reviewing a broad spectrum of techniques designed to enhance the resource efficiency of LLMs.
arXiv Detail & Related papers (2024-01-01T01:12:42Z) - A Review of Hybrid and Ensemble in Deep Learning for Natural Language Processing [0.5266869303483376]
Review systematically introduces each task, delineates key architectures from Recurrent Neural Networks (RNNs) to Transformer-based models like BERT.
The adaptability of ensemble techniques is emphasized, highlighting their capacity to enhance various NLP applications.
Challenges in implementation, including computational overhead, overfitting, and model interpretation complexities, are addressed.
arXiv Detail & Related papers (2023-12-09T14:49:34Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
We present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer.
Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks.
Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate.
arXiv Detail & Related papers (2023-05-23T17:55:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.