Active Learning for Level Set Estimation Using Randomized Straddle Algorithms
- URL: http://arxiv.org/abs/2408.03144v1
- Date: Tue, 6 Aug 2024 12:39:12 GMT
- Title: Active Learning for Level Set Estimation Using Randomized Straddle Algorithms
- Authors: Yu Inatsu, Shion Takeno, Kentaro Kutsukake, Ichiro Takeuchi,
- Abstract summary: We propose a novel method to identify the set of input points where a function takes value above (or below) a given threshold.
The confidence parameter in the proposed method has the advantages of not needing adjustment, not depending on the number of iterations and candidate points, and not being conservative.
- Score: 18.96269063427081
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Level set estimation (LSE), the problem of identifying the set of input points where a function takes value above (or below) a given threshold, is important in practical applications. When the function is expensive-to-evaluate and black-box, the \textit{straddle} algorithm, which is a representative heuristic for LSE based on Gaussian process models, and its extensions having theoretical guarantees have been developed. However, many of existing methods include a confidence parameter $\beta^{1/2}_t$ that must be specified by the user, and methods that choose $\beta^{1/2}_t$ heuristically do not provide theoretical guarantees. In contrast, theoretically guaranteed values of $\beta^{1/2}_t$ need to be increased depending on the number of iterations and candidate points, and are conservative and not good for practical performance. In this study, we propose a novel method, the \textit{randomized straddle} algorithm, in which $\beta_t$ in the straddle algorithm is replaced by a random sample from the chi-squared distribution with two degrees of freedom. The confidence parameter in the proposed method has the advantages of not needing adjustment, not depending on the number of iterations and candidate points, and not being conservative. Furthermore, we show that the proposed method has theoretical guarantees that depend on the sample complexity and the number of iterations. Finally, we confirm the usefulness of the proposed method through numerical experiments using synthetic and real data.
Related papers
- Online non-parametric likelihood-ratio estimation by Pearson-divergence
functional minimization [55.98760097296213]
We introduce a new framework for online non-parametric LRE (OLRE) for the setting where pairs of iid observations $(x_t sim p, x'_t sim q)$ are observed over time.
We provide theoretical guarantees for the performance of the OLRE method along with empirical validation in synthetic experiments.
arXiv Detail & Related papers (2023-11-03T13:20:11Z) - Distribution-Free Inference for the Regression Function of Binary
Classification [0.0]
The paper presents a resampling framework to construct exact, distribution-free and non-asymptotically guaranteed confidence regions for the true regression function for any user-chosen confidence level.
It is proved that the constructed confidence regions are strongly consistent, that is, any false model is excluded in the long run with probability one.
arXiv Detail & Related papers (2023-08-03T15:52:27Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy.
Many algorithms for IRL have an inherently nested structure.
We develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy.
arXiv Detail & Related papers (2022-10-04T17:13:45Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
adversary-resilient distributed optimization, in which.
machines can independently compute gradients, and cooperate.
Our algorithm is based on a new concentration technique, and its sample complexity.
It is very practical: it improves upon the performance of all prior methods when no.
setting machines are present.
arXiv Detail & Related papers (2020-12-28T17:19:32Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
We prove that our algorithms require a number of evaluations gradient independent of training set size and number of parameters.
Experiments on MNIST and ImageNet confirm the theoretical scaling of our algorithms, which are 9--36 times more efficient than full-batch methods.
arXiv Detail & Related papers (2020-10-12T17:41:44Z) - Differentiable Linear Bandit Algorithm [6.849358422233866]
Upper Confidence Bound is arguably the most commonly used method for linear multi-arm bandit problems.
We introduce a gradient estimator, which allows the confidence bound to be learned via gradient ascent.
We show that the proposed algorithm achieves a $tildemathcalO(hatbetasqrtdT)$ upper bound of $T$-round regret, where $d$ is the dimension of arm features and $hatbeta$ is the learned size of confidence bound.
arXiv Detail & Related papers (2020-06-04T16:43:55Z) - A New Randomized Primal-Dual Algorithm for Convex Optimization with
Optimal Last Iterate Rates [16.54912614895861]
We develop a novel unified randomized block-coordinate primal-dual algorithm to solve a class of nonsmooth constrained convex optimization problems.
We prove that our algorithm achieves optimal convergence rates in two cases: general convexity and strong convexity.
Our results show that the proposed method has encouraging performance on different experiments.
arXiv Detail & Related papers (2020-03-03T03:59:26Z) - Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization [30.980431848476925]
We propose an algorithm for constrained finite smooth-sum minimization with a generalized linear prediction/structure.
The proposed method is simple to implement, does not require step-size tuning, and has a constant per-iteration independent of the dataset size.
We provide an implementation of all considered methods in an open-source package.
arXiv Detail & Related papers (2020-02-27T00:47:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.