Optimizing Disease Prediction with Artificial Intelligence Driven Feature Selection and Attention Networks
- URL: http://arxiv.org/abs/2408.03151v1
- Date: Wed, 31 Jul 2024 14:12:27 GMT
- Title: Optimizing Disease Prediction with Artificial Intelligence Driven Feature Selection and Attention Networks
- Authors: D. Dhinakaran, S. Edwin Raja, M. Thiyagarajan, J. Jeno Jasmine, P. Raghavan,
- Abstract summary: This article introduces a pioneering ensemble feature selection model.
At the heart of the proposed model lies the SEV-EB algorithm, a novel approach to optimal feature selection.
An HSC-AttentionNet is introduced, allowing the model to capture both short-term patterns and long-term dependencies in health data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid integration of machine learning methodologies in healthcare has ignited innovative strategies for disease prediction, particularly with the vast repositories of Electronic Health Records (EHR) data. This article delves into the realm of multi-disease prediction, presenting a comprehensive study that introduces a pioneering ensemble feature selection model. This model, designed to optimize learning systems, combines statistical, deep, and optimally selected features through the innovative Stabilized Energy Valley Optimization with Enhanced Bounds (SEV-EB) algorithm. The objective is to achieve unparalleled accuracy and stability in predicting various disorders. This work proposes an advanced ensemble model that synergistically integrates statistical, deep, and optimally selected features. This combination aims to enhance the predictive power of the model by capturing diverse aspects of the health data. At the heart of the proposed model lies the SEV-EB algorithm, a novel approach to optimal feature selection. The algorithm introduces enhanced bounds and stabilization techniques, contributing to the robustness and accuracy of the overall prediction model. To further elevate the predictive capabilities, an HSC-AttentionNet is introduced. This network architecture combines deep temporal convolution capabilities with LSTM, allowing the model to capture both short-term patterns and long-term dependencies in health data. Rigorous evaluations showcase the remarkable performance of the proposed model. Achieving a 95% accuracy and 94% F1-score in predicting various disorders, the model surpasses traditional methods, signifying a significant advancement in disease prediction accuracy. The implications of this research extend beyond the confines of academia.
Related papers
- A comparative study on feature selection for a risk prediction model for
colorectal cancer [0.0]
This work is focused on colorectal cancer, assessing several feature ranking algorithms in terms of performance for a set of risk prediction models.
A visual approach proposed in this work allows to see that the Neural Network-based wrapper ranking is the most unstable while the Random Forest is the most stable.
arXiv Detail & Related papers (2024-02-07T22:14:14Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Dataset Optimization for Chronic Disease Prediction with Bio-Inspired
Feature Selection [0.32634122554913997]
The study contributes to the advancement of predictive analytics in the realm of chronic diseases.
The potential impact of this work extends to early intervention, precision medicine, and improved patient outcomes.
arXiv Detail & Related papers (2023-12-17T18:18:34Z) - An Integrative Paradigm for Enhanced Stroke Prediction: Synergizing
XGBoost and xDeepFM Algorithms [1.064427783926208]
We propose an ensemble model that combines the power of XGBoost and xDeepFM algorithms.
Our work aims to improve upon existing stroke prediction models by achieving higher accuracy and robustness.
arXiv Detail & Related papers (2023-10-25T07:55:02Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting [0.0]
This paper explores the application of metaheuristic algorithms, namely Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO)
We evaluate their performance in weather forecasting based on metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-09-05T22:13:35Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression [11.1492931066686]
We present a temporal deep learning model to perform bidirectional representation learning on EHR sequences to predict depression.
The model generated the highest increases of precision-recall area under the curve (PRAUC) from 0.70 to 0.76 in depression prediction compared to the best baseline model.
arXiv Detail & Related papers (2020-09-26T17:56:37Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.