TSC: A Simple Two-Sided Constraint against Over-Smoothing
- URL: http://arxiv.org/abs/2408.03152v1
- Date: Tue, 6 Aug 2024 12:52:03 GMT
- Title: TSC: A Simple Two-Sided Constraint against Over-Smoothing
- Authors: Furong Peng, Kang Liu, Xuan Lu, Yuhua Qian, Hongren Yan, Chao Ma,
- Abstract summary: We introduce a simple Two-Sided Constraint (TSC) for Graph Convolutional Neural Network (GCN)
The random masking acts on the representation matrix's columns to regulate the degree of information aggregation from neighbors.
The contrastive constraint, applied to the representation matrix's rows, enhances the discriminability of the nodes.
- Score: 17.274727377858873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Neural Network (GCN), a widely adopted method for analyzing relational data, enhances node discriminability through the aggregation of neighboring information. Usually, stacking multiple layers can improve the performance of GCN by leveraging information from high-order neighbors. However, the increase of the network depth will induce the over-smoothing problem, which can be attributed to the quality and quantity of neighbors changing: (a) neighbor quality, node's neighbors become overlapping in high order, leading to aggregated information becoming indistinguishable, (b) neighbor quantity, the exponentially growing aggregated neighbors submerges the node's initial feature by recursively aggregating operations. Current solutions mainly focus on one of the above causes and seldom consider both at once. Aiming at tackling both causes of over-smoothing in one shot, we introduce a simple Two-Sided Constraint (TSC) for GCNs, comprising two straightforward yet potent techniques: random masking and contrastive constraint. The random masking acts on the representation matrix's columns to regulate the degree of information aggregation from neighbors, thus preventing the convergence of node representations. Meanwhile, the contrastive constraint, applied to the representation matrix's rows, enhances the discriminability of the nodes. Designed as a plug-in module, TSC can be easily coupled with GCN or SGC architectures. Experimental analyses on diverse real-world graph datasets verify that our approach markedly reduces the convergence of node's representation and the performance degradation in deeper GCN.
Related papers
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - Deep Graph Neural Networks via Posteriori-Sampling-based Node-Adaptive Residual Module [65.81781176362848]
Graph Neural Networks (GNNs) can learn from graph-structured data through neighborhood information aggregation.
As the number of layers increases, node representations become indistinguishable, which is known as over-smoothing.
We propose a textbfPosterior-Sampling-based, Node-distinguish Residual module (PSNR).
arXiv Detail & Related papers (2023-05-09T12:03:42Z) - Flattened Graph Convolutional Networks For Recommendation [18.198536511983452]
This paper proposes the flattened GCN(FlatGCN) model, which is able to achieve superior performance with remarkably less complexity compared with existing models.
First, we propose a simplified but powerful GCN architecture which aggregates the neighborhood information using one flattened GCN layer.
Second, we propose an informative neighbor-infomax sampling method to select the most valuable neighbors by measuring the correlation among neighboring nodes.
Third, we propose a layer ensemble technique which improves the expressiveness of the learned representations by assembling the layer-wise neighborhood representations at the final layer.
arXiv Detail & Related papers (2022-09-25T12:53:50Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Geometric Graph Representation Learning via Maximizing Rate Reduction [73.6044873825311]
Learning node representations benefits various downstream tasks in graph analysis such as community detection and node classification.
We propose Geometric Graph Representation Learning (G2R) to learn node representations in an unsupervised manner.
G2R maps nodes in distinct groups into different subspaces, while each subspace is compact and different subspaces are dispersed.
arXiv Detail & Related papers (2022-02-13T07:46:24Z) - Deep Graph Clustering via Dual Correlation Reduction [37.973072977988494]
We propose a novel self-supervised deep graph clustering method termed Dual Correlation Reduction Network (DCRN)
In our method, we first design a siamese network to encode samples. Then by forcing the cross-view sample correlation matrix and cross-view feature correlation matrix to approximate two identity matrices, respectively, we reduce the information correlation in the dual-level.
In order to alleviate representation collapse caused by over-smoothing in GCN, we introduce a propagation regularization term to enable the network to gain long-distance information.
arXiv Detail & Related papers (2021-12-29T04:05:38Z) - Feature Correlation Aggregation: on the Path to Better Graph Neural
Networks [37.79964911718766]
Prior to the introduction of Graph Neural Networks (GNNs), modeling and analyzing irregular data, particularly graphs, was thought to be the Achilles' heel of deep learning.
This paper introduces a central node permutation variant function through a frustratingly simple and innocent-looking modification to the core operation of a GNN.
A tangible boost in performance of the model is observed where the model surpasses previous state-of-the-art results by a significant margin while employing fewer parameters.
arXiv Detail & Related papers (2021-09-20T05:04:26Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - SLGCN: Structure Learning Graph Convolutional Networks for Graphs under
Heterophily [5.619890178124606]
We propose a structure learning graph convolutional networks (SLGCNs) to alleviate the issue from two aspects.
Specifically, we design a efficient-spectral-clustering with anchors (ESC-ANCH) approach to efficiently aggregate feature representations from all similar nodes.
Experimental results on a wide range of benchmark datasets illustrate that the proposed SLGCNs outperform the stat-of-the-art GNN counterparts.
arXiv Detail & Related papers (2021-05-28T13:00:38Z) - An Uncoupled Training Architecture for Large Graph Learning [20.784230322205232]
We present Node2Grids, a flexible uncoupled training framework for embedding graph data into grid-like data.
By ranking each node's influence through degree, Node2Grids selects the most influential first-order as well as second-order neighbors with central node fusion information.
For further improving the efficiency of downstream tasks, a simple CNN-based neural network is employed to capture the significant information from the mapped grid-like data.
arXiv Detail & Related papers (2020-03-21T11:49:16Z) - Unifying Graph Convolutional Neural Networks and Label Propagation [73.82013612939507]
We study the relationship between LPA and GCN in terms of two aspects: feature/label smoothing and feature/label influence.
Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification.
Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models.
arXiv Detail & Related papers (2020-02-17T03:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.