SLGCN: Structure Learning Graph Convolutional Networks for Graphs under
Heterophily
- URL: http://arxiv.org/abs/2105.13795v1
- Date: Fri, 28 May 2021 13:00:38 GMT
- Title: SLGCN: Structure Learning Graph Convolutional Networks for Graphs under
Heterophily
- Authors: Mengying Jiang, Guizhong Liu, Yuanchao Su, Xinliang Wu
- Abstract summary: We propose a structure learning graph convolutional networks (SLGCNs) to alleviate the issue from two aspects.
Specifically, we design a efficient-spectral-clustering with anchors (ESC-ANCH) approach to efficiently aggregate feature representations from all similar nodes.
Experimental results on a wide range of benchmark datasets illustrate that the proposed SLGCNs outperform the stat-of-the-art GNN counterparts.
- Score: 5.619890178124606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performances of GNNs for representation learning on the graph-structured
data are generally limited to the issue that existing GNNs rely on one
assumption, i.e., the original graph structure is reliable. However, since
real-world graphs is inevitably noisy or incomplete, this assumption is often
unrealistic. In this paper, we propose a structure learning graph convolutional
networks (SLGCNs) to alleviate the issue from two aspects, and the proposed
approach is applied to node classification. Specifically, the first is node
features, we design a efficient-spectral-clustering with anchors (ESC-ANCH)
approach to efficiently aggregate feature representationsfrom all similar
nodes, no matter how far away they are. The second is edges, our approach
generates a re-connected adjacency matrix according to the similarities between
nodes and optimized for the downstream prediction task so as to make up for the
shortcomings of original adjacency matrix, considering that the original
adjacency matrix usually provides misleading information for aggregation step
of GCN in the graphs with low level of homophily. Both the re-connected
adjacency matrix and original adjacency matrix are applied to SLGCNs to
aggregate feature representations from nearby nodes. Thus, SLGCNs can be
applied to graphs with various levels of homophily. Experimental results on a
wide range of benchmark datasets illustrate that the proposed SLGCNs outperform
the stat-of-the-art GNN counterparts.
Related papers
- Scalable Graph Compressed Convolutions [68.85227170390864]
We propose a differentiable method that applies permutations to calibrate input graphs for Euclidean convolution.
Based on the graph calibration, we propose the Compressed Convolution Network (CoCN) for hierarchical graph representation learning.
arXiv Detail & Related papers (2024-07-26T03:14:13Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
In representation learning on graph-structured data, many popular graph neural networks (GNNs) fail to capture long-range dependencies.
This paper proposes a novel graph learning framework called the graph convolutional network with self-attention (GCN-SA)
The proposed scheme exhibits an exceptional generalization capability in node-level representation learning.
arXiv Detail & Related papers (2024-03-06T05:00:31Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Beyond Graph Convolutional Network: An Interpretable
Regularizer-centered Optimization Framework [12.116373546916078]
Graph convolutional networks (GCNs) have been attracting widespread attentions due to their encouraging performance and powerful generalizations.
In this paper, we induce an interpretable regularizer-centerd optimization framework, in which by building appropriate regularizers we can interpret most GCNs.
Under the proposed framework, we devise a dual-regularizer graph convolutional network (dubbed tsGCN) to capture topological and semantic structures from graph data.
arXiv Detail & Related papers (2023-01-11T05:51:33Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting [32.69196871253339]
We propose a novel Edge Splitting GNN (ES-GNN) framework to adaptively distinguish between graph edges either relevant or irrelevant to learning tasks.
We show that our ES-GNN can be regarded as a solution to a disentangled graph denoising problem.
arXiv Detail & Related papers (2022-05-27T01:29:03Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - Feature Correlation Aggregation: on the Path to Better Graph Neural
Networks [37.79964911718766]
Prior to the introduction of Graph Neural Networks (GNNs), modeling and analyzing irregular data, particularly graphs, was thought to be the Achilles' heel of deep learning.
This paper introduces a central node permutation variant function through a frustratingly simple and innocent-looking modification to the core operation of a GNN.
A tangible boost in performance of the model is observed where the model surpasses previous state-of-the-art results by a significant margin while employing fewer parameters.
arXiv Detail & Related papers (2021-09-20T05:04:26Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
Graph Neural Networks (GNNs) explore the graph structure and node features by aggregating and transforming information within node neighborhoods.
We propose SimP-GCN that can effectively and efficiently preserve node similarity while exploiting graph structure.
We validate the effectiveness of SimP-GCN on seven benchmark datasets including three assortative and four disassorative graphs.
arXiv Detail & Related papers (2020-11-19T04:18:01Z) - Locality Preserving Dense Graph Convolutional Networks with Graph
Context-Aware Node Representations [19.623379678611744]
Graph convolutional networks (GCNs) have been widely used for representation learning on graph data.
In many graph classification applications, GCN-based approaches have outperformed traditional methods.
We propose a locality-preserving dense GCN with graph context-aware node representations.
arXiv Detail & Related papers (2020-10-12T02:12:27Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.