論文の概要: Line-based 6-DoF Object Pose Estimation and Tracking With an Event Camera
- arxiv url: http://arxiv.org/abs/2408.03225v1
- Date: Tue, 6 Aug 2024 14:36:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 13:48:07.709742
- Title: Line-based 6-DoF Object Pose Estimation and Tracking With an Event Camera
- Title(参考訳): イベントカメラによる線状6-DoFオブジェクトの位置推定と追跡
- Authors: Zibin Liu, Banglei Guan, Yang Shang, Qifeng Yu, Laurent Kneip,
- Abstract要約: イベントカメラは、高いダイナミックレンジ、低レイテンシ、動きのぼけに対するレジリエンスといった顕著な特性を持っている。
イベントカメラを用いた平面オブジェクトや非平面オブジェクトに対するラインベースロバストポーズ推定と追跡手法を提案する。
- 参考スコア(独自算出の注目度): 19.204896246140155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pose estimation and tracking of objects is a fundamental application in 3D vision. Event cameras possess remarkable attributes such as high dynamic range, low latency, and resilience against motion blur, which enables them to address challenging high dynamic range scenes or high-speed motion. These features make event cameras an ideal complement over standard cameras for object pose estimation. In this work, we propose a line-based robust pose estimation and tracking method for planar or non-planar objects using an event camera. Firstly, we extract object lines directly from events, then provide an initial pose using a globally-optimal Branch-and-Bound approach, where 2D-3D line correspondences are not known in advance. Subsequently, we utilize event-line matching to establish correspondences between 2D events and 3D models. Furthermore, object poses are refined and continuously tracked by minimizing event-line distances. Events are assigned different weights based on these distances, employing robust estimation algorithms. To evaluate the precision of the proposed methods in object pose estimation and tracking, we have devised and established an event-based moving object dataset. Compared against state-of-the-art methods, the robustness and accuracy of our methods have been validated both on synthetic experiments and the proposed dataset. The source code is available at https://github.com/Zibin6/LOPET.
- Abstract(参考訳): オブジェクトのポース推定と追跡は、3次元視覚における基本的な応用である。
イベントカメラは、ハイダイナミックレンジ、低レイテンシ、モーションボケに対するレジリエンスなどの顕著な特性を有しており、挑戦的なハイダイナミックレンジシーンや高速モーションに対処することができる。
これらの特徴により、イベントカメラはオブジェクトポーズ推定のための標準カメラよりも理想的な補完となる。
本研究では,イベントカメラを用いた平面オブジェクトや非平面オブジェクトに対するラインベースロバストポーズ推定と追跡手法を提案する。
まず、イベントから直接オブジェクト線を抽出し、2D-3D線対応が事前に分かっていない世界最適分岐境界法を用いて最初のポーズを与える。
次に,2次元イベントと3次元モデルとの対応性を確立するために,イベントラインマッチングを利用する。
さらに、イベントライン距離を最小化することにより、オブジェクトのポーズを洗練し、継続的に追跡する。
イベントはこれらの距離に基づいて異なる重みが割り当てられ、ロバストな推定アルゴリズムを用いる。
オブジェクトポーズ推定と追跡における提案手法の精度を評価するため,イベントベース移動オブジェクトデータセットを考案し,確立した。
現状の手法と比較して,提案手法の堅牢性と精度は,合成実験と提案したデータセットの両方で検証されている。
ソースコードはhttps://github.com/Zibin6/LOPETで入手できる。
関連論文リスト
- EVI-SAM: Robust, Real-time, Tightly-coupled Event-Visual-Inertial State Estimation and 3D Dense Mapping [5.154689086578339]
単眼イベントカメラを用いた6自由度ポーズトラッキングと3次元再構成の課題に対処するために,EVI-SAMを提案する。
新しいイベントベースのハイブリッドトラッキングフレームワークは、特徴マッチングの堅牢性と直接アライメントの精度を活用することで、ポーズを推定するように設計されている。
私たちの知る限りでは、イベントベースの高密度マッピングを実現するための非学習作業としてはこれが初めてです。
論文 参考訳(メタデータ) (2023-12-19T07:39:45Z) - LocaliseBot: Multi-view 3D object localisation with differentiable
rendering for robot grasping [9.690844449175948]
オブジェクトのポーズ推定に重点を置いています。
このアプローチは,オブジェクトの複数ビュー,それらの視点におけるカメラのパラメータ,オブジェクトの3次元CADモデルという3つの情報に依存している。
推定対象のポーズが99.65%の精度で真理把握候補を把握できることが示される。
論文 参考訳(メタデータ) (2023-11-14T14:27:53Z) - Tracking by 3D Model Estimation of Unknown Objects in Videos [122.56499878291916]
この表現は限定的であり、代わりに明示的なオブジェクト表現を用いて2次元追跡をガイドし改善することを提案する。
我々の表現は、全てのビデオフレームのオブジェクト上の全ての3Dポイント間の複雑な長期密度対応問題に取り組む。
提案手法は, 最適3次元形状, テクスチャ, 6DoFのポーズを推定するために, 新たな損失関数を最小化する。
論文 参考訳(メタデータ) (2023-04-13T11:32:36Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
本稿では、この問題を解決するためにRecurrenT(DORT)の動的オブジェクトをモデル化することを提案する。
DORTは、重い計算負担を軽減する動き推定のために、オブジェクトワイズローカルボリュームを抽出する。
フレキシブルで実用的で、ほとんどのカメラベースの3Dオブジェクト検出器に差し込むことができる。
論文 参考訳(メタデータ) (2023-03-29T12:33:55Z) - ParticleSfM: Exploiting Dense Point Trajectories for Localizing Moving
Cameras in the Wild [57.37891682117178]
本稿では,一対の光流からの高密度対応に基づく動画の高密度間接構造抽出手法を提案する。
不規則点軌道データを処理するために,新しいニューラルネットワークアーキテクチャを提案する。
MPIシンテルデータセットを用いた実験により,我々のシステムはより正確なカメラ軌道を生成することがわかった。
論文 参考訳(メタデータ) (2022-07-19T09:19:45Z) - Tracking 6-DoF Object Motion from Events and Frames [0.0]
本研究では,6自由度(6-DoF)物体の動き追跡のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-03-29T12:39:38Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - Single View Metrology in the Wild [94.7005246862618]
本研究では,物体の3次元の高さや地上のカメラの高さで表現されるシーンの絶対的なスケールを再現する,単一ビューメロジに対する新しいアプローチを提案する。
本手法は,被写体の高さなどの3Dエンティティによる未知のカメラとの相互作用から,弱い教師付き制約を抑えるために設計されたディープネットワークによって学習されたデータ駆動の先行情報に依存する。
いくつかのデータセットと仮想オブジェクト挿入を含むアプリケーションに対して、最先端の定性的かつ定量的な結果を示す。
論文 参考訳(メタデータ) (2020-07-18T22:31:33Z) - Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for
Event-based Object Tracking [87.0297771292994]
本稿では,イベントベースのトラッキング・バイ・ディテクト(ETD)手法を提案する。
この目的を達成するために,線形時間決定(ATSLTD)イベント・ツー・フレーム変換アルゴリズムを用いた適応時間曲面を提案する。
提案手法と,従来のカメラやイベントカメラをベースとした7種類のオブジェクト追跡手法と,ETDの2種類のバリエーションを比較した。
論文 参考訳(メタデータ) (2020-02-13T15:58:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。