論文の概要: Contrastive Learning for Image Complexity Representation
- arxiv url: http://arxiv.org/abs/2408.03230v1
- Date: Tue, 6 Aug 2024 14:44:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 13:48:07.707323
- Title: Contrastive Learning for Image Complexity Representation
- Title(参考訳): 画像複雑度表現のためのコントラスト学習
- Authors: Shipeng Liu, Liang Zhao, Dengfeng Chen, Zhanping Song,
- Abstract要約: 教師付き学習は、よく注釈付けされたデータセットから画像の複雑さの特徴を効果的に学習することができる。
画像の複雑さを表現するために,CLICというコントラスト学習を提案する。
RCMは、多スケールの局所作物からなる正のサンプルを生成することができる。
- 参考スコア(独自算出の注目度): 4.189743697330807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantifying and evaluating image complexity can be instrumental in enhancing the performance of various computer vision tasks. Supervised learning can effectively learn image complexity features from well-annotated datasets. However, creating such datasets requires expensive manual annotation costs. The models may learn human subjective biases from it. In this work, we introduce the MoCo v2 framework. We utilize contrastive learning to represent image complexity, named CLIC (Contrastive Learning for Image Complexity). We find that there are complexity differences between different local regions of an image, and propose Random Crop and Mix (RCM), which can produce positive samples consisting of multi-scale local crops. RCM can also expand the train set and increase data diversity without introducing additional data. We conduct extensive experiments with CLIC, comparing it with both unsupervised and supervised methods. The results demonstrate that the performance of CLIC is comparable to that of state-of-the-art supervised methods. In addition, we establish the pipelines that can apply CLIC to computer vision tasks to effectively improve their performance.
- Abstract(参考訳): 画像の複雑さの定量化と評価は、様々なコンピュータビジョンタスクの性能向上に有効である。
教師付き学習は、よく注釈付けされたデータセットから画像の複雑さの特徴を効果的に学習することができる。
しかし、このようなデータセットを作成するには、高価な手作業によるアノテーションのコストが必要になる。
モデルは人間の主観的バイアスをそこから学習することができる。
この作業では、MoCo v2フレームワークを紹介します。
CLIC(Contrastive Learning for Image Complexity)と呼ばれる画像複雑性を表現するために,コントラスト学習を利用する。
画像の異なる局所領域間には複雑性の違いがあることが分かり、マルチスケールの局所作物からなる正のサンプルを生成するランダム・クロップ・アンド・ミックス(Random Crop and Mix, RMC)を提案する。
RCMはまた、追加データを導入することなく、列車のセットを拡張し、データの多様性を高めることができる。
我々はCLICで広範囲にわたる実験を行い、教師なし手法と教師なし手法を比較した。
結果は、CLICのパフォーマンスが最先端の教師付きメソッドに匹敵することを示した。
さらに,CLICをコンピュータビジョンタスクに適用し,その性能を効果的に向上するパイプラインを確立する。
関連論文リスト
- Composed Image Retrieval using Contrastive Learning and Task-oriented
CLIP-based Features [32.138956674478116]
参照画像と相対キャプションからなるクエリが与えられた場合、Composeed Image Retrievalの目的は、参照画像と視覚的に類似した画像を取得することである。
検討されたタスクに対処するために、OpenAI CLIPモデルの機能を使用します。
我々は、バイモーダル情報を統合することで、画像テキスト機能を組み合わせることを学ぶコンビネータネットワークを訓練する。
論文 参考訳(メタデータ) (2023-08-22T15:03:16Z) - MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
自己教師付き学習は、ビジョントランスフォーマーネットワークの欲求を軽減できる。
所望のプロパティを統一する単段および単段のMOCAを提案する。
我々は,様々な評価プロトコルにおいて,低照度設定と強力な実験結果に対して,最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2023-07-18T15:46:20Z) - Multi-Spectral Image Classification with Ultra-Lean Complex-Valued
Models [28.798100220715686]
マルチスペクトル画像は、材料によって示される異なるスペクトルシグネチャによってリモートセンシングに有用である。
複素値コドメイン対称モデルを用いて実値MSI画像の分類を行う。
我々の研究は、実数値MSIデータにおける複素数値深層学習の価値を初めて示すものである。
論文 参考訳(メタデータ) (2022-11-21T19:01:53Z) - An Empirical Investigation of Representation Learning for Imitation [76.48784376425911]
視覚、強化学習、NLPにおける最近の研究は、補助的な表現学習の目的が、高価なタスク固有の大量のデータの必要性を減らすことを示している。
本稿では,表現学習アルゴリズムを構築するためのモジュラーフレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-16T11:23:42Z) - S2-Net: Self-supervision Guided Feature Representation Learning for
Cross-Modality Images [0.0]
モダリティ間の画像ペアは、通信の特徴表現を可能な限り近いものにするのに失敗することが多い。
本稿では,最近成功した検出・記述パイプラインに基づいて,モーダリティ間特徴表現学習ネットワークであるS2-Netを設計する。
本稿では,自己教師型学習とよく設計された損失関数を導入し,本来の利点を捨てることなくトレーニングを指導する。
論文 参考訳(メタデータ) (2022-03-28T08:47:49Z) - AugNet: End-to-End Unsupervised Visual Representation Learning with
Image Augmentation [3.6790362352712873]
我々は、未ラベル画像の集合から画像特徴を学習するための新しいディープラーニングトレーニングパラダイムであるAugNetを提案する。
実験により,低次元空間における画像の表現が可能であることを実証した。
多くのディープラーニングベースの画像検索アルゴリズムとは異なり、我々のアプローチは外部アノテーション付きデータセットへのアクセスを必要としない。
論文 参考訳(メタデータ) (2021-06-11T09:02:30Z) - Curious Representation Learning for Embodied Intelligence [81.21764276106924]
近年,自己指導型表現学習は顕著な成功を収めている。
しかし、真にインテリジェントなエージェントを構築するためには、環境から学習できる表現学習アルゴリズムを構築する必要がある。
本稿では,強化学習方針と視覚的表現モデルを同時に学習する,好奇心をそそる表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-03T17:59:20Z) - CoCon: Cooperative-Contrastive Learning [52.342936645996765]
自己教師付き視覚表現学習は効率的な映像分析の鍵である。
最近の画像表現の学習の成功は、コントラスト学習がこの課題に取り組むための有望なフレームワークであることを示唆している。
コントラスト学習の協調的バリエーションを導入し、ビュー間の相補的な情報を活用する。
論文 参考訳(メタデータ) (2021-04-30T05:46:02Z) - Factors of Influence for Transfer Learning across Diverse Appearance
Domains and Task Types [50.1843146606122]
現在の最新のコンピュータビジョンモデルでは、簡単な転送学習が一般的です。
転校学習に関するこれまでの体系的な研究は限られており、作業が期待される状況は十分に理解されていない。
本論文では,非常に異なる画像領域にまたがる転送学習の広範な実験的研究を行う。
論文 参考訳(メタデータ) (2021-03-24T16:24:20Z) - MOGAN: Morphologic-structure-aware Generative Learning from a Single
Image [59.59698650663925]
近年,1つの画像のみに基づく生成モデルによる完全学習が提案されている。
多様な外観のランダムなサンプルを生成するMOGANというMOrphologic-structure-aware Generative Adversarial Networkを紹介します。
合理的な構造の維持や外観の変化など、内部機能に重点を置いています。
論文 参考訳(メタデータ) (2021-03-04T12:45:23Z) - Learning Test-time Augmentation for Content-based Image Retrieval [42.188013259368766]
オフザシェルフ畳み込みニューラルネットワークは、多くの画像検索タスクにおいて優れた結果をもたらす。
既存の画像検索手法では、ターゲットデータ特有のバリエーションに適応するために、事前訓練されたネットワークを微調整または修正する必要がある。
本手法は, テスト時に強調した画像から抽出した特徴を, 強化学習を通じて学習したポリシーに則って集約することにより, 既製の特徴の分散を促進させる。
論文 参考訳(メタデータ) (2020-02-05T05:08:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。