TextIM: Part-aware Interactive Motion Synthesis from Text
- URL: http://arxiv.org/abs/2408.03302v1
- Date: Tue, 6 Aug 2024 17:08:05 GMT
- Title: TextIM: Part-aware Interactive Motion Synthesis from Text
- Authors: Siyuan Fan, Bo Du, Xiantao Cai, Bo Peng, Longling Sun,
- Abstract summary: TextIM is a novel framework for synthesizing TEXT-driven human Interactive Motions.
Our approach leverages large language models, functioning as a human brain, to identify interacting human body parts.
For training and evaluation, we carefully selected and re-labeled interactive motions from HUMANML3D to develop a specialized dataset.
- Score: 25.91739105467082
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose TextIM, a novel framework for synthesizing TEXT-driven human Interactive Motions, with a focus on the precise alignment of part-level semantics. Existing methods often overlook the critical roles of interactive body parts and fail to adequately capture and align part-level semantics, resulting in inaccuracies and even erroneous movement outcomes. To address these issues, TextIM utilizes a decoupled conditional diffusion framework to enhance the detailed alignment between interactive movements and corresponding semantic intents from textual descriptions. Our approach leverages large language models, functioning as a human brain, to identify interacting human body parts and to comprehend interaction semantics to generate complicated and subtle interactive motion. Guided by the refined movements of the interacting parts, TextIM further extends these movements into a coherent whole-body motion. We design a spatial coherence module to complement the entire body movements while maintaining consistency and harmony across body parts using a part graph convolutional network. For training and evaluation, we carefully selected and re-labeled interactive motions from HUMANML3D to develop a specialized dataset. Experimental results demonstrate that TextIM produces semantically accurate human interactive motions, significantly enhancing the realism and applicability of synthesized interactive motions in diverse scenarios, even including interactions with deformable and dynamically changing objects.
Related papers
- KinMo: Kinematic-aware Human Motion Understanding and Generation [6.962697597686156]
Controlling human motion based on text presents an important challenge in computer vision.
Traditional approaches often rely on holistic action descriptions for motion synthesis.
We propose a novel motion representation that decomposes motion into distinct body joint group movements.
arXiv Detail & Related papers (2024-11-23T06:50:11Z) - Versatile Motion Language Models for Multi-Turn Interactive Agents [28.736843383405603]
We introduce Versatile Interactive Motion language model, which integrates both language and motion modalities.
We evaluate the versatility of our method across motion-related tasks, motion to text, text to motion, reaction generation, motion editing, and reasoning about motion sequences.
arXiv Detail & Related papers (2024-10-08T02:23:53Z) - InterDreamer: Zero-Shot Text to 3D Dynamic Human-Object Interaction [27.10256777126629]
This paper showcases the potential of generating human-object interactions without direct training on text-interaction pair data.
We introduce a world model designed to comprehend simple physics, modeling how human actions influence object motion.
By integrating these components, our novel framework, InterDreamer, is able to generate text-aligned 3D HOI sequences in a zero-shot manner.
arXiv Detail & Related papers (2024-03-28T17:59:30Z) - THOR: Text to Human-Object Interaction Diffusion via Relation Intervention [51.02435289160616]
We propose a novel Text-guided Human-Object Interaction diffusion model with Relation Intervention (THOR)
In each diffusion step, we initiate text-guided human and object motion and then leverage human-object relations to intervene in object motion.
We construct Text-BEHAVE, a Text2HOI dataset that seamlessly integrates textual descriptions with the currently largest publicly available 3D HOI dataset.
arXiv Detail & Related papers (2024-03-17T13:17:25Z) - Controllable Human-Object Interaction Synthesis [77.56877961681462]
We propose Controllable Human-Object Interaction Synthesis (CHOIS) to generate synchronized object motion and human motion in 3D scenes.
Here, language descriptions inform style and intent, and waypoints, which can be effectively extracted from high-level planning, ground the motion in the scene.
Our module seamlessly integrates with a path planning module, enabling the generation of long-term interactions in 3D environments.
arXiv Detail & Related papers (2023-12-06T21:14:20Z) - ReMoS: 3D Motion-Conditioned Reaction Synthesis for Two-Person Interactions [66.87211993793807]
We present ReMoS, a denoising diffusion based model that synthesizes full body motion of a person in two person interaction scenario.
We demonstrate ReMoS across challenging two person scenarios such as pair dancing, Ninjutsu, kickboxing, and acrobatics.
We also contribute the ReMoCap dataset for two person interactions containing full body and finger motions.
arXiv Detail & Related papers (2023-11-28T18:59:52Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs.
We demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model.
arXiv Detail & Related papers (2023-11-27T14:32:33Z) - GRIP: Generating Interaction Poses Using Spatial Cues and Latent Consistency [57.9920824261925]
Hands are dexterous and highly versatile manipulators that are central to how humans interact with objects and their environment.
modeling realistic hand-object interactions is critical for applications in computer graphics, computer vision, and mixed reality.
GRIP is a learning-based method that takes as input the 3D motion of the body and the object, and synthesizes realistic motion for both hands before, during, and after object interaction.
arXiv Detail & Related papers (2023-08-22T17:59:51Z) - IMoS: Intent-Driven Full-Body Motion Synthesis for Human-Object
Interactions [69.95820880360345]
We present the first framework to synthesize the full-body motion of virtual human characters with 3D objects placed within their reach.
Our system takes as input textual instructions specifying the objects and the associated intentions of the virtual characters.
We show that our synthesized full-body motions appear more realistic to the participants in more than 80% of scenarios.
arXiv Detail & Related papers (2022-12-14T23:59:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.