IMoS: Intent-Driven Full-Body Motion Synthesis for Human-Object
Interactions
- URL: http://arxiv.org/abs/2212.07555v2
- Date: Fri, 16 Dec 2022 18:39:09 GMT
- Title: IMoS: Intent-Driven Full-Body Motion Synthesis for Human-Object
Interactions
- Authors: Anindita Ghosh, Rishabh Dabral, Vladislav Golyanik, Christian
Theobalt, Philipp Slusallek
- Abstract summary: We present the first framework to synthesize the full-body motion of virtual human characters with 3D objects placed within their reach.
Our system takes as input textual instructions specifying the objects and the associated intentions of the virtual characters.
We show that our synthesized full-body motions appear more realistic to the participants in more than 80% of scenarios.
- Score: 69.95820880360345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Can we make virtual characters in a scene interact with their surrounding
objects through simple instructions? Is it possible to synthesize such motion
plausibly with a diverse set of objects and instructions? Inspired by these
questions, we present the first framework to synthesize the full-body motion of
virtual human characters performing specified actions with 3D objects placed
within their reach. Our system takes as input textual instructions specifying
the objects and the associated intentions of the virtual characters and outputs
diverse sequences of full-body motions. This is in contrast to existing work,
where full-body action synthesis methods generally do not consider object
interactions, and human-object interaction methods focus mainly on synthesizing
hand or finger movements for grasping objects. We accomplish our objective by
designing an intent-driven full-body motion generator, which uses a pair of
decoupled conditional variational autoencoders (CVAE) to learn the motion of
the body parts in an autoregressive manner. We also optimize for the positions
of the objects with six degrees of freedom (6DoF) such that they plausibly fit
within the hands of the synthesized characters. We compare our proposed method
with the existing methods of motion synthesis and establish a new and stronger
state-of-the-art for the task of intent-driven motion synthesis. Through a user
study, we further show that our synthesized full-body motions appear more
realistic to the participants in more than 80% of scenarios compared to the
current state-of-the-art methods, and are perceived to be as good as the ground
truth on several occasions.
Related papers
- Object Motion Guided Human Motion Synthesis [22.08240141115053]
We study the problem of full-body human motion synthesis for the manipulation of large-sized objects.
We propose Object MOtion guided human MOtion synthesis (OMOMO), a conditional diffusion framework.
We develop a novel system that captures full-body human manipulation motions by simply attaching a smartphone to the object being manipulated.
arXiv Detail & Related papers (2023-09-28T08:22:00Z) - GRIP: Generating Interaction Poses Using Spatial Cues and Latent Consistency [57.9920824261925]
Hands are dexterous and highly versatile manipulators that are central to how humans interact with objects and their environment.
modeling realistic hand-object interactions is critical for applications in computer graphics, computer vision, and mixed reality.
GRIP is a learning-based method that takes as input the 3D motion of the body and the object, and synthesizes realistic motion for both hands before, during, and after object interaction.
arXiv Detail & Related papers (2023-08-22T17:59:51Z) - NIFTY: Neural Object Interaction Fields for Guided Human Motion
Synthesis [21.650091018774972]
We create a neural interaction field attached to a specific object, which outputs the distance to the valid interaction manifold given a human pose as input.
This interaction field guides the sampling of an object-conditioned human motion diffusion model.
We synthesize realistic motions for sitting and lifting with several objects, outperforming alternative approaches in terms of motion quality and successful action completion.
arXiv Detail & Related papers (2023-07-14T17:59:38Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: Task-Oriented Human-Object Interactions Generation with Implicit Neural Representations.
Our method generates continuous motions that are parameterized only by the temporal coordinate.
This work takes a step further toward general human-scene interaction simulation.
arXiv Detail & Related papers (2023-03-23T09:31:56Z) - Compositional Human-Scene Interaction Synthesis with Semantic Control [16.93177243590465]
We aim to synthesize humans interacting with a given 3D scene controlled by high-level semantic specifications.
We design a novel transformer-based generative model, in which the articulated 3D human body surface points and 3D objects are jointly encoded.
Inspired by the compositional nature of interactions that humans can simultaneously interact with multiple objects, we define interaction semantics as the composition of varying numbers of atomic action-object pairs.
arXiv Detail & Related papers (2022-07-26T11:37:44Z) - Towards Diverse and Natural Scene-aware 3D Human Motion Synthesis [117.15586710830489]
We focus on the problem of synthesizing diverse scene-aware human motions under the guidance of target action sequences.
Based on this factorized scheme, a hierarchical framework is proposed, with each sub-module responsible for modeling one aspect.
Experiment results show that the proposed framework remarkably outperforms previous methods in terms of diversity and naturalness.
arXiv Detail & Related papers (2022-05-25T18:20:01Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
We focus on how to transfer on two different robotic platforms the same kinematics modulation that humans adopt when manipulating delicate objects.
We choose to modulate the velocity profile adopted by the robots' end-effector, inspired by what humans do when transporting objects with different characteristics.
We exploit a novel Generative Adversarial Network architecture, trained with human kinematics examples, to generalize over them and generate new and meaningful velocity profiles.
arXiv Detail & Related papers (2022-03-29T15:03:05Z) - SAGA: Stochastic Whole-Body Grasping with Contact [60.43627793243098]
Human grasping synthesis has numerous applications including AR/VR, video games, and robotics.
In this work, our goal is to synthesize whole-body grasping motion. Given a 3D object, we aim to generate diverse and natural whole-body human motions that approach and grasp the object.
arXiv Detail & Related papers (2021-12-19T10:15:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.