Toward Smart Scheduling in Tapis
- URL: http://arxiv.org/abs/2408.03349v1
- Date: Mon, 5 Aug 2024 20:01:31 GMT
- Title: Toward Smart Scheduling in Tapis
- Authors: Joe Stubbs, Smruti Padhy, Richard Cardone,
- Abstract summary: We present our efforts to develop an intelligent job scheduling capability in Tapis.
We focus on one such specific challenge: predicting queue times for a job on different HPC systems and queues.
Our first set of results cast the problem as a regression, which can be used to select the best system from a list of existing options.
- Score: 1.0377683220196874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Tapis framework provides APIs for automating job execution on remote resources, including HPC clusters and servers running in the cloud. Tapis can simplify the interaction with remote cyberinfrastructure (CI), but the current services require users to specify the exact configuration of a job to run, including the system, queue, node count, and maximum run time, among other attributes. Moreover, the remote resources must be defined and configured in Tapis before a job can be submitted. In this paper, we present our efforts to develop an intelligent job scheduling capability in Tapis, where various attributes about a job configuration can be automatically determined for the user, and computational resources can be dynamically provisioned by Tapis for specific jobs. We develop an overall architecture for such a feature, which suggests a set of core challenges to be solved. Then, we focus on one such specific challenge: predicting queue times for a job on different HPC systems and queues, and we present two sets of results based on machine learning methods. Our first set of results cast the problem as a regression, which can be used to select the best system from a list of existing options. Our second set of results frames the problem as a classification, allowing us to compare the use of an existing system with a dynamically provisioned resource.
Related papers
- Is the GPU Half-Empty or Half-Full? Practical Scheduling Techniques for LLMs [3.7758841366694353]
We survey scheduling techniques from the literature and from practical serving systems.
We find that schedulers from the literature often achieve good performance but introduce significant complexity.
In contrast, schedulers in practical deployments often leave easy performance gains on the table but are easy to implement, deploy and configure.
arXiv Detail & Related papers (2024-10-23T13:05:46Z) - Aux-NAS: Exploiting Auxiliary Labels with Negligibly Extra Inference Cost [73.28626942658022]
We aim at exploiting additional auxiliary labels from an independent (auxiliary) task to boost the primary task performance.
Our method is architecture-based with a flexible asymmetric structure for the primary and auxiliary tasks.
Experiments with six tasks on NYU v2, CityScapes, and Taskonomy datasets using VGG, ResNet, and ViT backbones validate the promising performance.
arXiv Detail & Related papers (2024-05-09T11:50:19Z) - Chain-of-Skills: A Configurable Model for Open-domain Question Answering [79.8644260578301]
The retrieval model is an indispensable component for real-world knowledge-intensive tasks.
Recent work focuses on customized methods, limiting the model transferability and scalability.
We propose a modular retriever where individual modules correspond to key skills that can be reused across datasets.
arXiv Detail & Related papers (2023-05-04T20:19:39Z) - Learning While Scheduling in Multi-Server Systems with Unknown
Statistics: MaxWeight with Discounted UCB [18.898514227870926]
This paper considers a multi-server system with multiple servers and multiple types of jobs, where different job types require different amounts of processing time at different servers.
The goal is to schedule jobs on servers without knowing the statistics of the processing times.
We propose a new algorithm, which combines the MaxWeight scheduling policy with discounted upper confidence bound (UCB) to simultaneously learn statistics and schedule jobs to servers.
arXiv Detail & Related papers (2022-09-02T15:37:02Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
We propose a controllable multi-task network that dynamically adjusts its architecture and weights to match the desired task preference as well as the resource constraints.
We propose a disentangled training of two hypernetworks, by exploiting task affinity and a novel branching regularized loss, to take input preferences and accordingly predict tree-structured models with adapted weights.
arXiv Detail & Related papers (2022-03-28T17:56:40Z) - Mining Robust Default Configurations for Resource-constrained AutoML [18.326426020906215]
We present a novel method of selecting performant configurations for a given task by performing offline autoML and mining over a diverse set of tasks.
We show that our approach is effective for warm-starting existing autoML platforms.
arXiv Detail & Related papers (2022-02-20T23:08:04Z) - Elastic Architecture Search for Diverse Tasks with Different Resources [87.23061200971912]
We study a new challenging problem of efficient deployment for diverse tasks with different resources, where the resource constraint and task of interest corresponding to a group of classes are dynamically specified at testing time.
Previous NAS approaches seek to design architectures for all classes simultaneously, which may not be optimal for some individual tasks.
We present a novel and general framework, called Elastic Architecture Search (EAS), permitting instant specializations at runtime for diverse tasks with various resource constraints.
arXiv Detail & Related papers (2021-08-03T00:54:27Z) - Tailored Learning-Based Scheduling for Kubernetes-Oriented Edge-Cloud
System [54.588242387136376]
We introduce KaiS, a learning-based scheduling framework for edge-cloud systems.
First, we design a coordinated multi-agent actor-critic algorithm to cater to decentralized request dispatch.
Second, for diverse system scales and structures, we use graph neural networks to embed system state information.
Third, we adopt a two-time-scale scheduling mechanism to harmonize request dispatch and service orchestration.
arXiv Detail & Related papers (2021-01-17T03:45:25Z) - Rosella: A Self-Driving Distributed Scheduler for Heterogeneous Clusters [7.206919625027208]
We present Rosella, a new self-driving, distributed approach for task scheduling in heterogeneous clusters.
Rosella automatically learns the compute environment and adjusts its scheduling policy in real-time.
We evaluate Rosella with a variety of workloads on a 32-node AWS cluster.
arXiv Detail & Related papers (2020-10-28T20:12:29Z) - Sequence-to-sequence models for workload interference [1.988145627448243]
Co-scheduling of jobs in data-centers is a challenging scenario, where jobs can compete for resources yielding to severe slowdowns or failed executions.
Current techniques, most of them already involving machine learning and job modeling, are based on workload behavior summarization across time.
We propose a methodology for modeling co-scheduling of jobs on data-centers, based on their behavior towards resources and execution time.
arXiv Detail & Related papers (2020-06-25T14:11:46Z) - MTL-NAS: Task-Agnostic Neural Architecture Search towards
General-Purpose Multi-Task Learning [71.90902837008278]
We propose to incorporate neural architecture search (NAS) into general-purpose multi-task learning (GP-MTL)
In order to adapt to different task combinations, we disentangle the GP-MTL networks into single-task backbones.
We also propose a novel single-shot gradient-based search algorithm that closes the performance gap between the searched architectures.
arXiv Detail & Related papers (2020-03-31T09:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.