Adversarial Domain Adaptation for Cross-user Activity Recognition Using Diffusion-based Noise-centred Learning
- URL: http://arxiv.org/abs/2408.03353v2
- Date: Sat, 31 Aug 2024 23:33:10 GMT
- Title: Adversarial Domain Adaptation for Cross-user Activity Recognition Using Diffusion-based Noise-centred Learning
- Authors: Xiaozhou Ye, Kevin I-Kai Wang,
- Abstract summary: Human Activity Recognition (HAR) plays a crucial role in various applications such as human-computer interaction and healthcare monitoring.
This paper introduces a novel framework, termed Diffusion-based Noise-centered Adrial Learning Domain Adaptation (Diff-Noise-Adv-DA)
It is designed to address these challenges by leveraging generative diffusion modeling and adversarial learning techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Human Activity Recognition (HAR) plays a crucial role in various applications such as human-computer interaction and healthcare monitoring. However, challenges persist in HAR models due to the data distribution differences between training and real-world data distributions, particularly evident in cross-user scenarios. This paper introduces a novel framework, termed Diffusion-based Noise-centered Adversarial Learning Domain Adaptation (Diff-Noise-Adv-DA), designed to address these challenges by leveraging generative diffusion modeling and adversarial learning techniques. Traditional HAR models often struggle with the diversity of user behaviors and sensor data distributions. Diff-Noise-Adv-DA innovatively integrates the inherent noise within diffusion models, harnessing its latent information to enhance domain adaptation. Specifically, the framework transforms noise into a critical carrier of activity and domain class information, facilitating robust classification across different user domains. Experimental evaluations demonstrate the effectiveness of Diff-Noise-Adv-DA in improving HAR model performance across different users, surpassing traditional domain adaptation methods. The framework not only mitigates distribution mismatches but also enhances data quality through noise-based denoising techniques.
Related papers
- DyMix: Dynamic Frequency Mixup Scheduler based Unsupervised Domain Adaptation for Enhancing Alzheimer's Disease Identification [9.506504023554031]
We propose a novel approach called the dynamic frequency mixup scheduler (DyMix) for unsupervised domain adaptation.
Our proposed DyMix adjusts the magnitude of the frequency regions being mixed from the source and target domains.
We demonstrate its outstanding performance in Alzheimer's disease diagnosis compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-10-02T07:18:47Z) - Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
We introduce a novel training data attribution method called Debias and Denoise Attribution (DDA)
Our method significantly outperforms existing approaches, achieving an averaged AUC of 91.64%.
DDA exhibits strong generality and scalability across various sources and different-scale models like LLaMA2, QWEN2, and Mistral.
arXiv Detail & Related papers (2024-10-02T07:14:26Z) - Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration [64.84134880709625]
We show that it is possible to perform domain adaptation via the noise space using diffusion models.
In particular, by leveraging the unique property of how auxiliary conditional inputs influence the multi-step denoising process, we derive a meaningful diffusion loss.
We present crucial strategies such as channel-shuffling layer and residual-swapping contrastive learning in the diffusion model.
arXiv Detail & Related papers (2024-06-26T17:40:30Z) - DIDA: Denoised Imitation Learning based on Domain Adaptation [28.36684781402964]
We focus on the problem of Learning from Noisy Demonstrations (LND), where the imitator is required to learn from data with noise.
We propose Denoised Imitation learning based on Domain Adaptation (DIDA), which designs two discriminators to distinguish the noise level and expertise level of data.
Experiment results on MuJoCo demonstrate that DIDA can successfully handle challenging imitation tasks from demonstrations with various types of noise, outperforming most baseline methods.
arXiv Detail & Related papers (2024-04-04T11:29:05Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - A Novel Cross-Perturbation for Single Domain Generalization [54.612933105967606]
Single domain generalization aims to enhance the ability of the model to generalize to unknown domains when trained on a single source domain.
The limited diversity in the training data hampers the learning of domain-invariant features, resulting in compromised generalization performance.
We propose CPerb, a simple yet effective cross-perturbation method to enhance the diversity of the training data.
arXiv Detail & Related papers (2023-08-02T03:16:12Z) - Knowledge Diffusion for Distillation [53.908314960324915]
The representation gap between teacher and student is an emerging topic in knowledge distillation (KD)
We state that the essence of these methods is to discard the noisy information and distill the valuable information in the feature.
We propose a novel KD method dubbed DiffKD, to explicitly denoise and match features using diffusion models.
arXiv Detail & Related papers (2023-05-25T04:49:34Z) - TASKED: Transformer-based Adversarial learning for human activity
recognition using wearable sensors via Self-KnowledgE Distillation [6.458496335718508]
We propose a novel Transformer-based Adversarial learning framework for human activity recognition using wearable sensors via Self-KnowledgE Distillation (TASKED)
In the proposed method, we adopt the teacher-free self-knowledge distillation to improve the stability of the training procedure and the performance of human activity recognition.
arXiv Detail & Related papers (2022-09-14T11:08:48Z) - Learnable Multi-level Frequency Decomposition and Hierarchical Attention
Mechanism for Generalized Face Presentation Attack Detection [7.324459578044212]
Face presentation attack detection (PAD) is attracting a lot of attention and playing a key role in securing face recognition systems.
We propose a dual-stream convolution neural networks (CNNs) framework to deal with unseen scenarios.
We successfully prove the design of our proposed PAD solution in a step-wise ablation study.
arXiv Detail & Related papers (2021-09-16T13:06:43Z) - Spectrum-Guided Adversarial Disparity Learning [52.293230153385124]
We propose a novel end-to-end knowledge directed adversarial learning framework.
It portrays the class-conditioned intraclass disparity using two competitive encoding distributions and learns the purified latent codes by denoising learned disparity.
The experiments on four HAR benchmark datasets demonstrate the robustness and generalization of our proposed methods over a set of state-of-the-art.
arXiv Detail & Related papers (2020-07-14T05:46:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.