Spectrum-Guided Adversarial Disparity Learning
- URL: http://arxiv.org/abs/2007.06831v1
- Date: Tue, 14 Jul 2020 05:46:27 GMT
- Title: Spectrum-Guided Adversarial Disparity Learning
- Authors: Zhe Liu, Lina Yao, Lei Bai, Xianzhi Wang, Can Wang
- Abstract summary: We propose a novel end-to-end knowledge directed adversarial learning framework.
It portrays the class-conditioned intraclass disparity using two competitive encoding distributions and learns the purified latent codes by denoising learned disparity.
The experiments on four HAR benchmark datasets demonstrate the robustness and generalization of our proposed methods over a set of state-of-the-art.
- Score: 52.293230153385124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has been a significant challenge to portray intraclass disparity precisely
in the area of activity recognition, as it requires a robust representation of
the correlation between subject-specific variation for each activity class. In
this work, we propose a novel end-to-end knowledge directed adversarial
learning framework, which portrays the class-conditioned intraclass disparity
using two competitive encoding distributions and learns the purified latent
codes by denoising learned disparity. Furthermore, the domain knowledge is
incorporated in an unsupervised manner to guide the optimization and further
boosts the performance. The experiments on four HAR benchmark datasets
demonstrate the robustness and generalization of our proposed methods over a
set of state-of-the-art. We further prove the effectiveness of automatic domain
knowledge incorporation in performance enhancement.
Related papers
- Contrastive Learning with Consistent Representations [8.364383223740097]
This paper proposes Contrastive Learning with Consistent Representations CoCor.
At the heart of CoCor is a novel consistency metric termed DA consistency.
Experimental results demonstrate that CoCor notably enhances the generalizability and transferability of learned representations.
arXiv Detail & Related papers (2023-02-03T04:34:00Z) - Multi-level Contrast Network for Wearables-based Joint Activity
Segmentation and Recognition [10.828099015828693]
Human activity recognition (HAR) with wearables is promising research that can be widely adopted in many smart healthcare applications.
Most HAR algorithms are susceptible to the multi-class windows problem that is essential yet rarely exploited.
We introduce the segmentation technology into HAR, yielding joint activity segmentation and recognition.
arXiv Detail & Related papers (2022-08-16T05:39:02Z) - Conditional Supervised Contrastive Learning for Fair Text Classification [59.813422435604025]
We study learning fair representations that satisfy a notion of fairness known as equalized odds for text classification via contrastive learning.
Specifically, we first theoretically analyze the connections between learning representations with a fairness constraint and conditional supervised contrastive objectives.
arXiv Detail & Related papers (2022-05-23T17:38:30Z) - Spatio-temporal Relation Modeling for Few-shot Action Recognition [100.3999454780478]
We propose a few-shot action recognition framework, STRM, which enhances class-specific featureriminability while simultaneously learning higher-order temporal representations.
Our approach achieves an absolute gain of 3.5% in classification accuracy, as compared to the best existing method in the literature.
arXiv Detail & Related papers (2021-12-09T18:59:14Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition.
We propose in this paper a novel active learning framework that we call Maximum Discrepancy for Active Learning (MCDAL)
In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them.
arXiv Detail & Related papers (2021-07-23T06:57:08Z) - Towards Fair Knowledge Transfer for Imbalanced Domain Adaptation [61.317911756566126]
We propose a Towards Fair Knowledge Transfer framework to handle the fairness challenge in imbalanced cross-domain learning.
Specifically, a novel cross-domain mixup generation is exploited to augment the minority source set with target information to enhance fairness.
Our model significantly improves over 20% on two benchmarks in terms of the overall accuracy.
arXiv Detail & Related papers (2020-10-23T06:29:09Z) - Attend And Discriminate: Beyond the State-of-the-Art for Human Activity
Recognition using Wearable Sensors [22.786406177997172]
Wearables are fundamental to improving our understanding of human activities.
We rigorously explore new opportunities to learn enriched and highly discriminating activity representations.
Our contributions achieves new state-of-the-art performance on four diverse activity recognition problem benchmarks.
arXiv Detail & Related papers (2020-07-14T16:44:16Z) - Knowledge Distillation Meets Self-Supervision [109.6400639148393]
Knowledge distillation involves extracting "dark knowledge" from a teacher network to guide the learning of a student network.
We show that the seemingly different self-supervision task can serve as a simple yet powerful solution.
By exploiting the similarity between those self-supervision signals as an auxiliary task, one can effectively transfer the hidden information from the teacher to the student.
arXiv Detail & Related papers (2020-06-12T12:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.