RayGauss: Volumetric Gaussian-Based Ray Casting for Photorealistic Novel View Synthesis
- URL: http://arxiv.org/abs/2408.03356v1
- Date: Tue, 6 Aug 2024 10:59:58 GMT
- Title: RayGauss: Volumetric Gaussian-Based Ray Casting for Photorealistic Novel View Synthesis
- Authors: Hugo Blanc, Jean-Emmanuel Deschaud, Alexis Paljic,
- Abstract summary: Differentiable rendering methods made significant progress in novel view synthesis.
We provide a consistent formulation of the emitted radiance c and density sigma for differentiable ray casting of irregularly distributed Gaussians.
We achieve superior quality rendering compared to the state-of-the-art while maintaining reasonable training times and achieving inference speeds of 25 FPS on the Blender dataset.
- Score: 3.4341938551046227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differentiable volumetric rendering-based methods made significant progress in novel view synthesis. On one hand, innovative methods have replaced the Neural Radiance Fields (NeRF) network with locally parameterized structures, enabling high-quality renderings in a reasonable time. On the other hand, approaches have used differentiable splatting instead of NeRF's ray casting to optimize radiance fields rapidly using Gaussian kernels, allowing for fine adaptation to the scene. However, differentiable ray casting of irregularly spaced kernels has been scarcely explored, while splatting, despite enabling fast rendering times, is susceptible to clearly visible artifacts. Our work closes this gap by providing a physically consistent formulation of the emitted radiance c and density {\sigma}, decomposed with Gaussian functions associated with Spherical Gaussians/Harmonics for all-frequency colorimetric representation. We also introduce a method enabling differentiable ray casting of irregularly distributed Gaussians using an algorithm that integrates radiance fields slab by slab and leverages a BVH structure. This allows our approach to finely adapt to the scene while avoiding splatting artifacts. As a result, we achieve superior rendering quality compared to the state-of-the-art while maintaining reasonable training times and achieving inference speeds of 25 FPS on the Blender dataset. Project page with videos and code: https://raygauss.github.io/
Related papers
- Splatfacto-W: A Nerfstudio Implementation of Gaussian Splatting for Unconstrained Photo Collections [25.154665328053333]
We introduce Splatfacto-W, an in-trivial approach that integrates per-Gaussian neural color features and per-image appearance embeddings into an rendering process.
Our method improves the Peak Signal-to-Noise Ratio (PSNR) by an average of 5.3 dB compared to 3DGS, enhances training speed by 150 times compared to NeRF-based methods, and achieves a similar rendering speed to 3DGS.
arXiv Detail & Related papers (2024-07-17T04:02:54Z) - 3D Gaussian Ray Tracing: Fast Tracing of Particle Scenes [50.36933474990516]
This work considers ray tracing the particles, building a bounding volume hierarchy and casting a ray for each pixel using high-performance ray tracing hardware.
To efficiently handle large numbers of semi-transparent particles, we describe a specialized algorithm which encapsulates particles with bounding meshes.
Experiments demonstrate the speed and accuracy of our approach, as well as several applications in computer graphics and vision.
arXiv Detail & Related papers (2024-07-09T17:59:30Z) - DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading [50.331929164207324]
We introduce DeferredGS, a method for decoupling and editing the Gaussian splatting representation using deferred shading.
Both qualitative and quantitative experiments demonstrate the superior performance of DeferredGS in novel view and editing tasks.
arXiv Detail & Related papers (2024-04-15T01:58:54Z) - CVT-xRF: Contrastive In-Voxel Transformer for 3D Consistent Radiance Fields from Sparse Inputs [65.80187860906115]
We propose a novel approach to improve NeRF's performance with sparse inputs.
We first adopt a voxel-based ray sampling strategy to ensure that the sampled rays intersect with a certain voxel in 3D space.
We then randomly sample additional points within the voxel and apply a Transformer to infer the properties of other points on each ray, which are then incorporated into the volume rendering.
arXiv Detail & Related papers (2024-03-25T15:56:17Z) - pixelSplat: 3D Gaussian Splats from Image Pairs for Scalable Generalizable 3D Reconstruction [26.72289913260324]
pixelSplat is a feed-forward model that learns to reconstruct 3D radiance fields parameterized by 3D Gaussian primitives from pairs of images.
Our model features real-time and memory-efficient rendering for scalable training as well as fast 3D reconstruction at inference time.
arXiv Detail & Related papers (2023-12-19T17:03:50Z) - GauFRe: Gaussian Deformation Fields for Real-time Dynamic Novel View
Synthesis [17.572987038801475]
We propose a method for dynamic scene reconstruction using deformable 3D Gaussians.
The differentiable pipeline is optimized end-to-end with a self-supervised rendering.
Our method results are comparable to state-of-the-art neural radiance field methods.
arXiv Detail & Related papers (2023-12-18T18:59:03Z) - Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields [54.482261428543985]
Methods that use Neural Radiance fields are versatile for traditional tasks such as novel view synthesis.
3D Gaussian splatting has shown state-of-the-art performance on real-time radiance field rendering.
We propose architectural and training changes to efficiently avert this problem.
arXiv Detail & Related papers (2023-12-06T00:46:30Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
We present an information-theoretic regularization technique for few-shot novel view synthesis based on neural implicit representation.
The proposed approach minimizes potential reconstruction inconsistency that happens due to insufficient viewpoints.
We achieve consistently improved performance compared to existing neural view synthesis methods by large margins on multiple standard benchmarks.
arXiv Detail & Related papers (2021-12-31T11:56:01Z) - Efficient Neural Radiance Fields with Learned Depth-Guided Sampling [43.79307270743013]
We present a hybrid scene representation which combines the best of implicit radiance fields and explicit depth maps for efficient rendering.
Experiments show that the proposed approach exhibits state-of-the-art performance on the DTU, Real Forward-facing and NeRF Synthetic datasets.
We also demonstrate the capability of our method to synthesize free-viewpoint videos of dynamic human performers in real-time.
arXiv Detail & Related papers (2021-12-02T18:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.