Variable-strength non-local measurements reveal quantum violations of classical counting principles
- URL: http://arxiv.org/abs/2408.03398v1
- Date: Tue, 6 Aug 2024 18:48:12 GMT
- Title: Variable-strength non-local measurements reveal quantum violations of classical counting principles
- Authors: Noah Lupu-Gladstein, Ou Teen Arthur Pang, Hugo Ferretti, Weng-Kian Tham, Aephraim M. Steinberg, Kent Bonsma-Fisher, Aharon Brodutch,
- Abstract summary: We implement a variant of the quantum pigeonhole paradox thought experiment to study whether classical counting principles survive in the quantum domain.
We observe strong measurements significantly violate the pigeonhole principle.
We observe the same kind of cancellation at higher measurement strengths, thus raising the question: do strong measurements have imaginary parts?
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We implement a variant of the quantum pigeonhole paradox thought experiment to study whether classical counting principles survive in the quantum domain. We observe strong measurements significantly violate the pigeonhole principle (that among three pigeons in two holes, at least one pair must be in the same hole) and the sum rule (that the number of pigeon pairs in the same hole is the sum of the number of pairs across each of the holes) in an ensemble that is pre and postselected into particular separable states. To investigate whether measurement disturbance is a viable explanation for these counter-intuitive phenomena, we employ the first ever variable-strength measurement of a non-local observable. As we decrease the measurement strength, we find the violation of the sum rule decreases, yet the pigeonhole principle remains violated. In the weak limit, the sum rule is restored due to the cancellation between two weak values with equal and opposite imaginary parts. We observe the same kind of cancellation at higher measurement strengths, thus raising the question: do strong measurements have imaginary parts?
Related papers
- Continuity of entropies via integral representations [16.044444452278064]
We show that Frenkel's integral representation of the quantum relative entropy provides a natural framework to derive continuity bounds for quantum information measures.
We obtain a number of results: (1) a tight continuity relation for the conditional entropy in the case where the two states have equal marginals on the conditioning system, resolving a conjecture by Wilde in this special case; (2) a stronger version of the Fannes-Audenaert inequality on quantum entropy; and (3) better estimates on the quantum capacity of approximately degradable channels.
arXiv Detail & Related papers (2024-08-27T17:44:52Z) - Measuring the Evolution of Entanglement in Compton Scattering [101.11630543545151]
The behavior of quantum entanglement during scattering is identical to the behavior of initially classically correlated photons up to a constant factor equal to two.
Our dedicated experiment with photons confirms these results and explains the "Puzzle of Decoherence" observed recently.
arXiv Detail & Related papers (2024-06-20T14:21:23Z) - Conservation Laws For Every Quantum Measurement Outcome [0.9558392439655016]
We argue that the conservation law in quantum mechanics should be rewritten to go beyond its hitherto statistical formulation.
We show that conservation can be localised at the level of the system of interest and its relevant frame of reference.
arXiv Detail & Related papers (2024-04-29T11:42:47Z) - A theory-independent bound saturated by quantum mechanics [0.0]
Tsirelson's original inequality for the precession protocol serves as a monopartite test of quantumness.
We consider this inequality for measurements with finitely many outcomes in a theory-independent manner.
arXiv Detail & Related papers (2024-01-29T13:23:55Z) - Sequential sharing of two-qudit entanglement based on the entropic
uncertainty relation [15.907303576427644]
Entanglement and uncertainty relation are two focuses of quantum theory.
We relate entanglement sharing to the entropic uncertainty relation in a $(dtimes d)$-dimensional system via weak measurements with different pointers.
arXiv Detail & Related papers (2023-04-12T12:10:07Z) - Testing the equivalence principle with time-diffracted free-falling
quantum particles [0.0]
equivalence principle of gravity is examined at the quantum level using the diffraction in time of matter waves.
We consider a quasi-monochromatic beam of particles incident on a shutter which is removed at time $t = 0$ and fall due to the gravitational field.
We show that, in this case both the weak and strong versions of the equivalence principle are violated.
arXiv Detail & Related papers (2022-07-09T04:19:59Z) - Experimental refutation of real-valued quantum mechanics under strict
locality conditions [15.98149438495762]
Physicists describe nature using mathematics as the natural language, and for quantum mechanics, it prefers to use complex numbers.
Recently, it has been shown that a three-party correlation created in entanglement swapping scenarios cannot be reproduced using only real numbers.
Our results violate the real number bound of 7.66 by 5.30 standard deviations, hence rejecting the universal validity of the real-valued quantum mechanics to describe nature.
arXiv Detail & Related papers (2022-01-11T20:00:17Z) - Events in quantum mechanics are maximally non-absolute [0.9176056742068814]
We prove that quantum correlations can be maximally non-absolute according to both quantifiers.
We show that chained Bell inequalities (and relaxations thereof) are also valid constraints for Wigner's experiment.
arXiv Detail & Related papers (2021-12-19T21:15:16Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - Anomalous weak values via a single photon detection [0.0]
We present the first experiment measuring anomalous weak values with just a single click.
The measurement uncertainty is significantly smaller than the gap between the measured weak value and the nearest eigenvalue.
This result represents a breakthrough in understanding quantum measurement foundations, paving the way to further applications of weak values to quantum photonics.
arXiv Detail & Related papers (2021-03-23T14:57:55Z) - A Weaker Faithfulness Assumption based on Triple Interactions [89.59955143854556]
We propose a weaker assumption that we call $2$-adjacency faithfulness.
We propose a sound orientation rule for causal discovery that applies under weaker assumptions.
arXiv Detail & Related papers (2020-10-27T13:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.