Testing the equivalence principle with time-diffracted free-falling
quantum particles
- URL: http://arxiv.org/abs/2207.04189v1
- Date: Sat, 9 Jul 2022 04:19:59 GMT
- Title: Testing the equivalence principle with time-diffracted free-falling
quantum particles
- Authors: Juan A. Ca\~nas, J. Bernal, and A. Mart\'in-Ruiz
- Abstract summary: equivalence principle of gravity is examined at the quantum level using the diffraction in time of matter waves.
We consider a quasi-monochromatic beam of particles incident on a shutter which is removed at time $t = 0$ and fall due to the gravitational field.
We show that, in this case both the weak and strong versions of the equivalence principle are violated.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The equivalence principle of gravity is examined at the quantum level using
the diffraction in time of matter waves in two ways. First, we consider a
quasi-monochromatic beam of particles incident on a shutter which is removed at
time $t = 0$ and fall due to the gravitational field. The probability density
exhibits a set of mass-dependent oscillations which are genuinely quantum in
nature, thereby reflecting quantum violations to the weak equivalence
principle, although the strong equivalence principle remains valid. We estimate
the degree of violation in terms of the width of the diffraction-in-time
effect. Second, motivated by the recent advances in the manipulation of
ultracold atoms and neutrons as well as the experimental observation of quantum
states of ultracold neutrons in the gravitational field above a flat mirror, we
study the diffraction in time of a suddenly released beam of particles
initially prepared in gravitational quantum bound states. In this case, we
quantify the degree of violation by comparing the time of flight from the mean
position of the initial wave packet versus the time of flight as measured from
the mirror. We show that, in this case both the weak and strong versions of the
equivalence principle are violated. We demonstrate that compatibility between
equivalence principle and quantum mechanics is recovered in the macroscopic
(large-mass) limit. Possible realizations with ultracold neutrons, cesium atoms
and large molecules are discussed.
Related papers
- Measuring the Evolution of Entanglement in Compton Scattering [101.11630543545151]
The behavior of quantum entanglement during scattering is identical to the behavior of initially classically correlated photons up to a constant factor equal to two.
Our dedicated experiment with photons confirms these results and explains the "Puzzle of Decoherence" observed recently.
arXiv Detail & Related papers (2024-06-20T14:21:23Z) - Adherence and violation of the equivalence principle from classical to
quantum mechanics [0.0]
An inhomogeneous gravitational field tidal effects couple the center of mass motion to the quantum fluctuations.
The size of this violation is within sensitivities of current Eotvos and clock-based return time experiments.
arXiv Detail & Related papers (2023-10-13T16:12:31Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Relaxation to quantum equilibrium and the Born rule in Nelson's
stochastic dynamics [0.1315429617442362]
Nelson's quantum mechanics provides an ideal arena to test how the Born rule is established.
For all cases, Nelson's trajectories are initially localized at a definite position.
arXiv Detail & Related papers (2023-05-06T16:10:39Z) - On free fall of fermions and antifermions [0.0]
We propose a model describing spin-half quantum particles in curved spacetime.
We find that spin precesses in a normal Fermi frame, even in the absence of torsion.
We also find that (elementary) fermions and antifermions are indistinguishable in gravity.
arXiv Detail & Related papers (2022-10-13T15:35:36Z) - Scattering Times of Quantum Particles from the Gravitational Potential,
and Equivalence Principle Violation [0.0]
Universality of motion under gravity, the equivalence principle, is violated for quantum particles.
We study time it takes for a quantum particle to scatter from the gravitational potential, and show that the scattering time acts as an indicator of the equivalence principle violation.
arXiv Detail & Related papers (2022-08-11T01:45:32Z) - Partition of kinetic energy and magnetic moment in dissipative
diamagnetism [20.218184785285132]
We analyze dissipative diamagnetism, arising due to dissipative cyclotron motion in two dimensions, in the light of the quantum counterpart of energy equipartition theorem.
The expressions for kinetic energy and magnetic moment are reformulated in the context of superstatistics.
arXiv Detail & Related papers (2022-07-30T08:07:28Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum time dilation in a gravitational field [39.58317527488534]
We investigate how the superposition principle affects the gravitational time dilation observed by a simple clock.
We show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets.
arXiv Detail & Related papers (2022-04-22T10:02:21Z) - Fresh look at the effects of gravitational tidal forces on a
freely-falling quantum particle [0.0]
We take a closer and new look at the effects of tidal forces on the free fall of a quantum particle inside a spherically symmetric gravitational field.
We derive the corresponding Schr"odinger equation for the particle by starting from the fully relativistic Klein-Gordon equation.
arXiv Detail & Related papers (2021-02-18T18:25:08Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.