Post-Mortem Human Iris Segmentation Analysis with Deep Learning
- URL: http://arxiv.org/abs/2408.03448v1
- Date: Tue, 6 Aug 2024 21:00:02 GMT
- Title: Post-Mortem Human Iris Segmentation Analysis with Deep Learning
- Authors: Afzal Hossain, Tipu Sultan, Stephanie Schuckers,
- Abstract summary: This paper presents and compares Deep Learning (DL) models designed for segmenting iris images collected from the deceased subjects.
Our proposed method effectively learns and identifies specific deformations inherent in post-mortem samples.
To the best of our knowledge, this study provides the most extensive evaluation of DL models for post-mortem iris segmentation.
- Score: 1.1470070927586018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Iris recognition is widely used in several fields such as mobile phones, financial transactions, identification cards, airport security, international border control, voter registration for living persons. However, the possibility of identifying deceased individuals based on their iris patterns has emerged recently as a supplementary or alternative method valuable in forensic analysis. Simultaneously, it poses numerous new technological challenges and one of the most challenging among them is the image segmentation stage as conventional iris recognition approaches have struggled to reliably execute it. This paper presents and compares Deep Learning (DL) models designed for segmenting iris images collected from the deceased subjects, by training SegNet and DeepLabV3+ semantic segmentation methods where using VGG19, ResNet18, ResNet50, MobileNetv2, Xception, or InceptionResNetv2 as backbones. In this study, our experiments demonstrate that our proposed method effectively learns and identifies specific deformations inherent in post-mortem samples and providing a significant improvement in accuracy. By employing our novel method MobileNetv2 as the backbone of DeepLabV3+ and replacing the final layer with a hybrid loss function combining Boundary and Dice loss, we achieve Mean Intersection over Union of 95.54% on the Warsaw-BioBase-PostMortem-Iris-v1 dataset. To the best of our knowledge, this study provides the most extensive evaluation of DL models for post-mortem iris segmentation.
Related papers
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Forensic Iris Image Synthesis [5.596752018167751]
Post-mortem iris recognition is an emerging application of iris-based human identification in a forensic setup.
This paper offers a conditional StyleGAN-based iris synthesis model, trained on the largest-available dataset of post-mortem iris samples.
arXiv Detail & Related papers (2023-12-07T08:28:41Z) - COMICS: End-to-end Bi-grained Contrastive Learning for Multi-face Forgery Detection [56.7599217711363]
Face forgery recognition methods can only process one face at a time.
Most face forgery recognition methods can only process one face at a time.
We propose COMICS, an end-to-end framework for multi-face forgery detection.
arXiv Detail & Related papers (2023-08-03T03:37:13Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
Traditional deep learning-based automatic segmentation requires extensive training data with ground-truth labels.
We propose a novel method based on multi-atlas segmentation, that accurately segments multiple tissues without relying on labeled data for training.
Our method employs a cascaded deep learning network for 3D image registration, which computes small, incremental deformations to the moving image to align it precisely with the fixed image.
arXiv Detail & Related papers (2023-07-07T13:17:12Z) - Interpretable Deep Learning-Based Forensic Iris Segmentation and
Recognition [4.691925709249742]
We present an end-to-end deep learning-based method for postmortem iris segmentation and recognition.
The method was trained and validated with data acquired from 171 cadavers, kept in mortuary conditions, and tested on subject-disjoint data acquired from 259 deceased subjects.
arXiv Detail & Related papers (2021-12-01T21:59:16Z) - Weakly Supervised Few-Shot Segmentation Via Meta-Learning [2.0962464943252934]
We present two novel meta learning methods, named WeaSeL and ProtoSeg, for the few-shot semantic segmentation task with sparse annotations.
We conducted extensive evaluation of the proposed methods in different applications in medical imaging and agricultural remote sensing.
arXiv Detail & Related papers (2021-09-03T18:20:26Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings [63.90855798947425]
Presentation attacks pose major challenges to most of the biometric modalities.
We propose a generalized deep learning-based presentation attack detection network, MVANet.
It is inspired by the simplicity and success of hybrid algorithm or fusion of multiple detection networks.
arXiv Detail & Related papers (2020-10-25T22:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.