Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings
- URL: http://arxiv.org/abs/2010.13244v1
- Date: Sun, 25 Oct 2020 22:42:27 GMT
- Title: Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings
- Authors: Mehak Gupta, Vishal Singh, Akshay Agarwal, Mayank Vatsa, and Richa
Singh
- Abstract summary: Presentation attacks pose major challenges to most of the biometric modalities.
We propose a generalized deep learning-based presentation attack detection network, MVANet.
It is inspired by the simplicity and success of hybrid algorithm or fusion of multiple detection networks.
- Score: 63.90855798947425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Presentation attacks are posing major challenges to most of the biometric
modalities. Iris recognition, which is considered as one of the most accurate
biometric modality for person identification, has also been shown to be
vulnerable to advanced presentation attacks such as 3D contact lenses and
textured lens. While in the literature, several presentation attack detection
(PAD) algorithms are presented; a significant limitation is the
generalizability against an unseen database, unseen sensor, and different
imaging environment. To address this challenge, we propose a generalized deep
learning-based PAD network, MVANet, which utilizes multiple representation
layers. It is inspired by the simplicity and success of hybrid algorithm or
fusion of multiple detection networks. The computational complexity is an
essential factor in training deep neural networks; therefore, to reduce the
computational complexity while learning multiple feature representation layers,
a fixed base model has been used. The performance of the proposed network is
demonstrated on multiple databases such as IIITD-WVU MUIPA and IIITD-CLI
databases under cross-database training-testing settings, to assess the
generalizability of the proposed algorithm.
Related papers
- Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - COMICS: End-to-end Bi-grained Contrastive Learning for Multi-face Forgery Detection [56.7599217711363]
Face forgery recognition methods can only process one face at a time.
Most face forgery recognition methods can only process one face at a time.
We propose COMICS, an end-to-end framework for multi-face forgery detection.
arXiv Detail & Related papers (2023-08-03T03:37:13Z) - An Efficient Ensemble Explainable AI (XAI) Approach for Morphed Face
Detection [1.2599533416395763]
We present a novel visual explanation approach named Ensemble XAI to provide a more comprehensive visual explanation for a deep learning prognostic model (EfficientNet-Grad1)
The experiments have been performed on three publicly available datasets namely Face Research Lab London Set, Wide Multi-Channel Presentation Attack (WMCA) and Makeup Induced Face Spoofing (MIFS)
arXiv Detail & Related papers (2023-04-23T13:43:06Z) - Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
Contactless 3D finger knuckle patterns have emerged as an effective biometric identifier due to its discriminativeness, visibility from a distance, and convenience.
Recent research has developed a deep feature collaboration network which simultaneously incorporates intermediate features from deep neural networks with multiple scales.
This paper advances this approach by investigating the possibility of learning a discriminative feature vector with the least possible dimension for representing 3D finger knuckle images.
arXiv Detail & Related papers (2023-01-07T20:55:16Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - End-to-End High Accuracy License Plate Recognition Based on Depthwise
Separable Convolution Networks [0.0]
We propose a novel segmentation-free framework for license plate recognition and introduce NP-ALPR dataset.
The proposed network model consists of the latest deep learning methods and state-of-the-art ideas, and benefits from a novel network architecture.
We evaluate the effectiveness of the proposed method on three different datasets and show a recognition accuracy of over 99% and over 70 fps.
arXiv Detail & Related papers (2022-02-21T14:45:03Z) - A Compact Deep Learning Model for Face Spoofing Detection [4.250231861415827]
presentation attack detection (PAD) has received significant attention from research communities.
We address the problem via fusing both wide and deep features in a unified neural architecture.
The procedure is done on different spoofing datasets such as ROSE-Youtu, SiW and NUAA Imposter.
arXiv Detail & Related papers (2021-01-12T21:20:09Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
We have proposed a deep learning-based network termed as textitMixNet to detect presentation attacks.
The proposed algorithm utilizes state-of-the-art convolutional neural network architectures and learns the feature mapping for each attack category.
arXiv Detail & Related papers (2020-10-25T23:01:13Z) - Deep convolutional neural networks for face and iris presentation attack
detection: Survey and case study [0.5801044612920815]
Cross-dataset evaluation on face PAD showed better generalization than state of the art.
We propose the use of a single deep network trained to detect both face and iris attacks.
arXiv Detail & Related papers (2020-04-25T02:06:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.