論文の概要: EEGMobile: Enhancing Speed and Accuracy in EEG-Based Gaze Prediction with Advanced Mobile Architectures
- arxiv url: http://arxiv.org/abs/2408.03449v1
- Date: Tue, 6 Aug 2024 21:02:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 14:16:39.540509
- Title: EEGMobile: Enhancing Speed and Accuracy in EEG-Based Gaze Prediction with Advanced Mobile Architectures
- Title(参考訳): EEGMobile: 高度なモバイルアーキテクチャによるEEGベースの視線予測における速度と精度の向上
- Authors: Teng Liang, Andrews Damoah,
- Abstract要約: 本研究では,脳波の回帰タスクにおいて,事前学習したMobileViTと知識蒸留(KD)を併用したモデルを提案する。
その結果,EEGEyeNet Absolute Position Task の以前の State-Of-The-Art (SOTA) に匹敵するレベル(3%以下)で動作可能であることが示された。
- 参考スコア(独自算出の注目度): 0.36832029288386137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalography (EEG) analysis is an important domain in the realm of Brain-Computer Interface (BCI) research. To ensure BCI devices are capable of providing practical applications in the real world, brain signal processing techniques must be fast, accurate, and resource-conscious to deliver low-latency neural analytics. This study presents a model that leverages a pre-trained MobileViT alongside Knowledge Distillation (KD) for EEG regression tasks. Our results showcase that this model is capable of performing at a level comparable (only 3% lower) to the previous State-Of-The-Art (SOTA) on the EEGEyeNet Absolute Position Task while being 33% faster and 60% smaller. Our research presents a cost-effective model applicable to resource-constrained devices and contributes to expanding future research on lightweight, mobile-friendly models for EEG regression.
- Abstract(参考訳): 脳波(EEG)解析は脳-コンピュータインタフェース(BCI)研究の領域において重要な領域である。
BCIデバイスが現実世界で実用的な応用を提供できるようにするためには、脳信号処理技術は高速で正確でリソースを意識して低レイテンシのニューラルネットワークを提供する必要がある。
本研究では,脳波の回帰タスクにおいて,事前学習したMobileViTと知識蒸留(KD)を併用したモデルを提案する。
以上の結果から,EEGEyeNet 絶対位置タスクでは,前回の State-Of-The-Art (SOTA) に匹敵するレベル(3%以下)で,33%の高速化と60%の小型化を実現していることがわかった。
本研究は, 資源制約型デバイスに適用可能な費用効率モデルを提案するとともに, 脳波レグレッションのための軽量でモバイルフレンドリーなモデルに関する今後の研究に寄与する。
関連論文リスト
- EEGPT: Unleashing the Potential of EEG Generalist Foundation Model by Autoregressive Pre-training [9.57946371147345]
EEGPTはこれらの課題に対処するために設計された最初の一般のEEG基盤モデルである。
まず,各電極を基本単位として扱う電極ワイド・モデリング手法を提案する。
第2に、最初の自己回帰型脳波事前学習モデルを開発する。
第3に,学習可能な電極グラフネットワークを用いたマルチタスク転送学習パラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-14T12:17:54Z) - ART: Artifact Removal Transformer for Reconstructing Noise-Free Multichannel Electroencephalographic Signals [0.10499611180329801]
脳波(EEG)のアーチファクト除去は神経科学的な分析と脳-コンピュータインターフェース(BCI)のパフォーマンスに大きな影響を及ぼす。
本研究は,脳波信号の過渡ミリ秒スケール特性を順応的に捉えるため,トランスフォーマーアーキテクチャを用いた脳波復調モデルを提案する。
脳波信号処理においてARTが他の深層学習に基づくアーティファクト除去手法を上回ることが確認された。
論文 参考訳(メタデータ) (2024-09-11T15:05:40Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - Fusing Pretrained ViTs with TCNet for Enhanced EEG Regression [0.07999703756441758]
本稿では、脳波回帰の精度を高めるために、事前訓練された視覚変換器(ViT)と時間畳み込みネットワーク(TCNet)の統合について詳述する。
以上の結果から, 回転平均角誤差(RMSE)を55.4から51.8に低減した。
性能を犠牲にすることなく、このモデルの速度を桁違いに向上させる(最大4.32倍高速)。
論文 参考訳(メタデータ) (2024-04-02T17:01:51Z) - hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience
applications [3.031375888004876]
脳波の既存のDLベースのモデリング手法に2つの課題がある。
被験者間の高いばらつきと低信号対雑音比は、脳波データの良好な品質を確保するのを困難にしている。
本稿では,高忠実度脳波再構成問題を対象とした2つの変分オートエンコーダモデル,すなわちvEEGNet-ver3とhvEEGNetを提案する。
論文 参考訳(メタデータ) (2023-11-20T15:36:31Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Data augmentation for learning predictive models on EEG: a systematic
comparison [79.84079335042456]
脳波(EEG)分類タスクの深層学習は、ここ数年急速に増加している。
EEG分類タスクのディープラーニングは、比較的小さなEEGデータセットによって制限されている。
データ拡張は、コンピュータビジョンや音声などのアプリケーションにまたがる最先端のパフォーマンスを得るために重要な要素となっている。
論文 参考訳(メタデータ) (2022-06-29T09:18:15Z) - Towards physiology-informed data augmentation for EEG-based BCIs [24.15108821320151]
本稿では,手元に設定したデータから新たなデータを生成することにより,トレーニングデータを増強する新しい手法を提案する。
本書では,本手法を解説し,参加者非依存型運動画像分類のための第1次予備結果を示す。
論文 参考訳(メタデータ) (2022-03-27T20:59:40Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
脳波感情認識のための伝達型注目ニューラルネットワーク(TANN)を提案する。
TANNは、伝達可能な脳波領域のデータとサンプルを適応的に強調することにより、感情的な識別情報を学習する。
これは、複数の脳領域レベル判別器と1つのサンプルレベル判別器の出力を測定することで実現できる。
論文 参考訳(メタデータ) (2020-09-21T02:42:30Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) はユーザとシステム間の強力なコミュニケーションツールである。
近年の技術進歩は、脳波(EEG)に基づく翻訳医療用BCIへの関心が高まっている。
論文 参考訳(メタデータ) (2020-01-28T10:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。