Hierarchical learning control for autonomous robots inspired by central nervous system
- URL: http://arxiv.org/abs/2408.03525v1
- Date: Wed, 7 Aug 2024 03:24:59 GMT
- Title: Hierarchical learning control for autonomous robots inspired by central nervous system
- Authors: Pei Zhang, Zhaobo Hua, Jinliang Ding,
- Abstract summary: We propose a novel hierarchical learning control framework by mimicking the hierarchical structure of the central nervous system.
The framework combines the active and passive control systems to improve both the flexibility and reliability of the control system.
This study reveals the principle that governs the autonomous behavior in the central nervous system and demonstrates the effectiveness of the hierarchical control approach.
- Score: 7.227887302864789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mammals can generate autonomous behaviors in various complex environments through the coordination and interaction of activities at different levels of their central nervous system. In this paper, we propose a novel hierarchical learning control framework by mimicking the hierarchical structure of the central nervous system along with their coordination and interaction behaviors. The framework combines the active and passive control systems to improve both the flexibility and reliability of the control system as well as to achieve more diverse autonomous behaviors of robots. Specifically, the framework has a backbone of independent neural network controllers at different levels and takes a three-level dual descending pathway structure, inspired from the functionality of the cerebral cortex, cerebellum, and spinal cord. We comprehensively validated the proposed approach through the simulation as well as the experiment of a hexapod robot in various complex environments, including obstacle crossing and rapid recovery after partial damage. This study reveals the principle that governs the autonomous behavior in the central nervous system and demonstrates the effectiveness of the hierarchical control approach with the salient features of the hierarchical learning control architecture and combination of active and passive control systems.
Related papers
- Navigating the swarm: Deep neural networks command emergent behaviours [2.7059353835118602]
We show that it is possible to generate coordinated structures in collective behavior with intended global patterns by fine-tuning an inter-agent interaction rule.
Our strategy employs deep neural networks, obeying the laws of dynamics, to find interaction rules that command desired structures.
Our findings pave the way for new applications in robotic swarm operations, active matter organisation, and for the uncovering of obscure interaction rules in biological systems.
arXiv Detail & Related papers (2024-07-16T02:46:11Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
We study interpretability of compact neural policies through the lens of disentangled representation.
We leverage decision trees to obtain factors of variation for disentanglement in robot learning.
We introduce interpretability metrics that measure disentanglement of learned neural dynamics.
arXiv Detail & Related papers (2022-10-13T01:10:41Z) - Hierarchical Decentralized Deep Reinforcement Learning Architecture for
a Simulated Four-Legged Agent [0.0]
In nature, control of movement happens in a hierarchical and decentralized fashion.
We present a novel decentral, hierarchical architecture to control a simulated legged agent.
arXiv Detail & Related papers (2022-09-21T07:55:33Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Self-organization of multi-layer spiking neural networks [4.859525864236446]
A key mechanism that enables the formation of complex architecture in the developing brain is the emergence of traveling-temporal waves of neuronal activity.
We propose a modular tool-kit in the form of a dynamical system that can be seamlessly stacked to assemble multi-layer neural networks.
Our framework leads to the self-organization of a wide variety of architectures, ranging from multi-layer perceptrons to autoencoders.
arXiv Detail & Related papers (2020-06-12T01:44:48Z) - Decentralized Deep Reinforcement Learning for a Distributed and Adaptive
Locomotion Controller of a Hexapod Robot [0.6193838300896449]
We propose a decentralized organization as found in insect motor control for coordination of different legs.
A concurrent local structure is able to learn better walking behavior.
arXiv Detail & Related papers (2020-05-21T11:40:37Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
We propose a brain-inspired neural system based on the reentry theory using Self-Organizing Maps and Hebbian-like learning.
We show the gain of the so-called hardware plasticity induced by the ReSOM, where the system's topology is not fixed by the user but learned along the system's experience through self-organization.
arXiv Detail & Related papers (2020-04-11T21:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.