論文の概要: Focal Depth Estimation: A Calibration-Free, Subject- and Daytime Invariant Approach
- arxiv url: http://arxiv.org/abs/2408.03591v1
- Date: Wed, 7 Aug 2024 07:09:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 13:43:46.276943
- Title: Focal Depth Estimation: A Calibration-Free, Subject- and Daytime Invariant Approach
- Title(参考訳): 焦点深度推定: 校正自由, 主観的, 日時不変アプローチ
- Authors: Benedikt W. Hosp, Björn Severitt, Rajat Agarwala, Evgenia Rusak, Yannick Sauer, Siegfried Wahl,
- Abstract要約: 本研究では,焦点深度推定のための地中キャリブレーションフリー手法を提案する。
我々は、短時間で眼球運動の特徴を分析するために機械学習技術を活用している。
提案手法は10cm未満の平均絶対誤差(MAE)を達成し,新しい焦点深度推定精度基準を設定した。
- 参考スコア(独自算出の注目度): 0.5026434955540995
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In an era where personalized technology is increasingly intertwined with daily life, traditional eye-tracking systems and autofocal glasses face a significant challenge: the need for frequent, user-specific calibration, which impedes their practicality. This study introduces a groundbreaking calibration-free method for estimating focal depth, leveraging machine learning techniques to analyze eye movement features within short sequences. Our approach, distinguished by its innovative use of LSTM networks and domain-specific feature engineering, achieves a mean absolute error (MAE) of less than 10 cm, setting a new focal depth estimation accuracy standard. This advancement promises to enhance the usability of autofocal glasses and pave the way for their seamless integration into extended reality environments, marking a significant leap forward in personalized visual technology.
- Abstract(参考訳): パーソナライズされたテクノロジーが日々の生活とますます絡み合っている時代において、従来の視線追跡システムとオートフォーカスメガネは重要な課題に直面している。
本研究では、焦点深度を推定するための画期的なキャリブレーションのない手法を導入し、機械学習技術を利用して短いシーケンス内での眼球運動の特徴を解析する。
LSTMネットワークとドメイン固有の特徴工学を革新的に活用することで,10cm未満の平均絶対誤差(MAE)を達成し,新たな焦点深度推定精度基準を設定した。
この進歩は、自動焦点メガネの使い勝手を向上し、拡張現実環境へのシームレスな統合の道を開くことを約束し、パーソナライズされたビジュアルテクノロジーにおける大きな飛躍を告げる。
関連論文リスト
- PLATE: A perception-latency aware estimator, [0.46040036610482665]
知覚遅延認識型エストリメータ(PLATE)
PLATEは、特定のパフォーマンス指標を最適化するために、異なるタイミングで異なる知覚構成を使用する。
他のフレームスキッピング技術と比較して、PLATEは形式的な複雑さと最適性解析を持つ。
論文 参考訳(メタデータ) (2024-01-24T17:04:18Z) - Deep Reinforcement Learning Based System for Intraoperative
Hyperspectral Video Autofocusing [2.476200036182773]
この研究は、焦点調整可能な液体レンズをビデオHSIエクソスコープに統合する。
現実的で再現可能なテストデータセットを作成するために、第一種ロボット焦点時間スキャンが実施された。
論文 参考訳(メタデータ) (2023-07-21T15:04:21Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
我々は、マーカーレスでホワイトボックスであり、より優れた精度とロバスト性を提供するEasyHeCと呼ばれる手眼校正の新しいアプローチを導入する。
我々は,2つの重要な技術 – レンダリングベースのカメラポーズの最適化と整合性に基づく共同空間探索 – を利用することを提案する。
本評価は,合成および実世界のデータセットにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-02T03:49:54Z) - Aberration-Aware Depth-from-Focus [20.956132508261664]
焦点スタックにおける最良焦点フレームの決定に影響を及ぼすオフ軸収差による領域ギャップについて検討する。
次に、収差認識トレーニング(AAT)を通じて、この領域ギャップをブリッジすることを検討する。
我々のアプローチは、異なる位置でレンズ収差をモデル化し、フォーカス距離をモデル化する軽量ネットワークで、従来のネットワークトレーニングパイプラインに統合される。
論文 参考訳(メタデータ) (2023-03-08T15:21:33Z) - Learned Monocular Depth Priors in Visual-Inertial Initialization [4.99761983273316]
視覚慣性オドメトリー(VIO)は、今日のほとんどのAR/VRおよび自律ロボットシステムのポーズ推定バックボーンである。
本稿では,古典的視覚慣性構造の限界を回避することを提案する。
学習した単眼深度画像(単眼深度)を利用して特徴の相対的深度を制約し,そのスケールとシフトを最適化することにより,単眼深度をメートル法スケールにアップグレードする。
論文 参考訳(メタデータ) (2022-04-20T00:30:04Z) - An automatic differentiation system for the age of differential privacy [65.35244647521989]
Tritiumは、微分プライベート(DP)機械学習(ML)のための自動微分ベース感度分析フレームワークである
我々は、微分プライベート(DP)機械学習(ML)のための自動微分に基づく感度分析フレームワークTritiumを紹介する。
論文 参考訳(メタデータ) (2021-09-22T08:07:42Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Estimating Egocentric 3D Human Pose in Global Space [70.7272154474722]
本稿では,魚眼カメラを用いた自己中心型3次元体姿勢推定法を提案する。
提案手法は, 定量的, 定性的に, 最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-04-27T20:01:57Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
そこで本研究では,収差画像とpsfマップを入力とし,レンズ固有深層プリエントを組み込んだ潜在高品質版を生成する,psf対応プラグイン・アンド・プレイ深層ネットワークを提案する。
具体的には、多彩なレンズの集合からベースモデルを事前訓練し、パラメータを迅速に精製して特定のレンズに適応させる。
論文 参考訳(メタデータ) (2021-04-07T12:00:38Z) - Calibrating Self-supervised Monocular Depth Estimation [77.77696851397539]
近年、ニューラルネットワークが深度を学習し、画像のシーケンスに変化を起こさせる能力を示す方法は、訓練信号として自己スーパービジョンのみを使用している。
カメラの構成や環境に関する事前情報を取り入れることで,センサの追加に頼ることなく,自己教師型定式化を用いて,スケールのあいまいさを排除し,深度を直接予測できることを示す。
論文 参考訳(メタデータ) (2020-09-16T14:35:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。