論文の概要: Path-SAM2: Transfer SAM2 for digital pathology semantic segmentation
- arxiv url: http://arxiv.org/abs/2408.03651v2
- Date: Wed, 4 Sep 2024 08:23:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 19:18:56.671883
- Title: Path-SAM2: Transfer SAM2 for digital pathology semantic segmentation
- Title(参考訳): Path-SAM2: Transfer SAM2 for digital pathology semantic segmentation
- Authors: Mingya Zhang, Liang Wang, Zhihao Chen, Yiyuan Ge, Xianping Tao,
- Abstract要約: Path-SAM2はSAM2モデルに初めて適応し,病的セマンティックセグメンテーションの課題に適応する。
病理組織学における最大の事前学習型視覚エンコーダ(UNI)とオリジナルのSAM2エンコーダを統合し,病理学に基づく事前知識を付加する。
3つの腺腫の病理データセットにおいて、Path-SAM2は最先端のパフォーマンスを達成した。
- 参考スコア(独自算出の注目度): 6.721564277355789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The semantic segmentation task in pathology plays an indispensable role in assisting physicians in determining the condition of tissue lesions. With the proposal of Segment Anything Model (SAM), more and more foundation models have seen rapid development in the field of image segmentation. Recently, SAM2 has garnered widespread attention in both natural image and medical image segmentation. Compared to SAM, it has significantly improved in terms of segmentation accuracy and generalization performance. We compared the foundational models based on SAM and found that their performance in semantic segmentation of pathological images was hardly satisfactory. In this paper, we propose Path-SAM2, which for the first time adapts the SAM2 model to cater to the task of pathological semantic segmentation. We integrate the largest pretrained vision encoder for histopathology (UNI) with the original SAM2 encoder, adding more pathology-based prior knowledge. Additionally, we introduce a learnable Kolmogorov-Arnold Networks (KAN) classification module to replace the manual prompt process. In three adenoma pathological datasets, Path-SAM2 has achieved state-of-the-art performance.This study demonstrates the great potential of adapting SAM2 to pathology image segmentation tasks. We plan to release the code and model weights for this paper at: https://github.com/simzhangbest/SAM2PATH
- Abstract(参考訳): 病理学における意味的セグメンテーションの課題は、組織病変の病態を決定するために医師を支援するのに欠かせない役割を担っている。
Segment Anything Model (SAM) の提案により、画像セグメンテーションの分野では、多くの基礎モデルが急速に発展してきた。
近年、SAM2は自然画像と医用画像のセグメンテーションの両方において広く注目を集めている。
SAMと比較すると,セグメンテーション精度と一般化性能は大幅に向上した。
SAMに基づく基礎モデルと比較したところ,病理像のセマンティックセグメンテーションにおけるそれらの性能はほとんど満足できないことがわかった。
本稿では,病的セマンティックセグメンテーションの課題に対応するためにSAM2モデルを初めて適用したPath-SAM2を提案する。
病理組織学における最大の事前学習型視覚エンコーダ(UNI)とオリジナルのSAM2エンコーダを統合し,病理学に基づく事前知識を付加する。
さらに,手動のプロンプト処理を置き換えるために,学習可能なKAN分類モジュールを導入する。
Path-SAM2は3つのアデノマ病的データセットにおいて最先端のパフォーマンスを達成しており,本研究はSAM2を画像分割タスクに適応させる大きな可能性を示している。
https://github.com/simzhangbest/SAM2PATH
関連論文リスト
- DB-SAM: Delving into High Quality Universal Medical Image Segmentation [100.63434169944853]
本稿では,2次元医療データと2次元医療データとのギャップを埋めるために,DB-SAMという二分岐型SAMフレームワークを提案する。
文献における最近の医療用SAMアダプタと比較して,DB-SAMは8.8%向上した。
論文 参考訳(メタデータ) (2024-10-05T14:36:43Z) - Unleashing the Potential of SAM2 for Biomedical Images and Videos: A Survey [8.216028136706948]
Segment Anything Model (SAM) は、プロンプト駆動のパラダイムをイメージセグメンテーションの領域に拡張したことを示す。
最近のSAM2の導入は、オリジナルのSAMをストリーミング方式に効果的に拡張し、ビデオセグメンテーションにおいて強力なパフォーマンスを示す。
本稿では,SAM2をバイオメディカル画像やビデオに適用するための最近の取り組みの概要について述べる。
論文 参考訳(メタデータ) (2024-08-23T07:51:10Z) - SAM2-UNet: Segment Anything 2 Makes Strong Encoder for Natural and Medical Image Segmentation [51.90445260276897]
我々は,Segment Anything Model 2 (SAM2) がU字型セグメンテーションモデルの強力なエンコーダであることを証明した。
本稿では, SAM2-UNet と呼ばれる, 汎用画像分割のための簡易かつ効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-16T17:55:38Z) - SAM2-Adapter: Evaluating & Adapting Segment Anything 2 in Downstream Tasks: Camouflage, Shadow, Medical Image Segmentation, and More [16.40994541980171]
本稿では SAM2-Adapter について紹介する。
SAM-Adapterの強みの上に構築され、多様なアプリケーションに対する一般化性と構成性の向上を提供する。
我々は、SAM2-AdapterでSAM2モデルを活用する可能性を示し、研究コミュニティに奨励する。
論文 参考訳(メタデータ) (2024-08-08T16:40:15Z) - Biomedical SAM 2: Segment Anything in Biomedical Images and Videos [32.818587990862426]
BioSAM-2はSAM-2に基づくバイオメディカルデータに最適化された基盤モデルである。
実験の結果,BioSAM-2は既存の基礎モデルの性能を上回るだけでなく,専門モデルに適合するか,あるいは超えていることがわかった。
論文 参考訳(メタデータ) (2024-08-06T16:34:04Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - SAM-Med2D [34.82072231983896]
我々はSAM-Med2Dを医療用2次元画像に適用する最も包括的な研究である。
まず、公開およびプライベートデータセットから約4.6Mの画像と19.7Mマスクを収集し、キュレートします。
元のSAMのエンコーダとデコーダを微調整して、良好な性能のSAM-Med2Dを得る。
論文 参考訳(メタデータ) (2023-08-30T17:59:02Z) - SurgicalSAM: Efficient Class Promptable Surgical Instrument Segmentation [65.52097667738884]
そこで本研究では,SAMの知識と外科的特異的情報を統合し,汎用性を向上させるための,新しいエンドツーエンドの効率的なチューニング手法であるScientialSAMを紹介した。
具体的には,タイピングのための軽量なプロトタイプベースクラスプロンプトエンコーダを提案し,クラスプロトタイプから直接プロンプト埋め込みを生成する。
また,手術器具カテゴリー間のクラス間差異の低さに対応するために,コントラッシブなプロトタイプ学習を提案する。
論文 参考訳(メタデータ) (2023-08-17T02:51:01Z) - SAM-Path: A Segment Anything Model for Semantic Segmentation in Digital
Pathology [28.62539784951823]
Segment Anything Model (SAM) のような基礎モデルは、最近セグメンテーションタスクで普遍的に使用されるように提案されている。
そこで本研究では,学習可能なクラスプロンプトを導入し,また病理基盤モデルの導入によりさらなる拡張を行うことによって,SAMをセマンティックセマンティックセマンティックセマンティクスに適用する。
我々のフレームワークSAM-Pathは、人間の入力プロンプトを使わずに、デジタル病理のセマンティックセマンティックセグメンテーションを行うSAMの能力を高める。
論文 参考訳(メタデータ) (2023-07-12T20:15:25Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。