A molecular dynamics framework coupled with smoothed particle hydrodynamics for quantum plasma simulations
- URL: http://arxiv.org/abs/2408.03693v1
- Date: Wed, 7 Aug 2024 11:14:00 GMT
- Title: A molecular dynamics framework coupled with smoothed particle hydrodynamics for quantum plasma simulations
- Authors: Thomas Campbell, Pontus Svensson, Brett Larder, Daniel Plummer, Sam M. Vinko, Gianluca Gregori,
- Abstract summary: We present a novel scheme for modelling quantum plasmas in the warm dense matter regime via a hybrid smoothed particle hydrodynamic - molecular dynamic treatment.
This treatment is founded upon Bohm's interpretation of quantum mechanics for partially degenerate fluids.
It does not apply the Born-Oppenheimer approximation, and is computationally tractable.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel scheme for modelling quantum plasmas in the warm dense matter (WDM) regime via a hybrid smoothed particle hydrodynamic - molecular dynamic treatment, here referred to as 'Bohm SPH'. This treatment is founded upon Bohm's interpretation of quantum mechanics for partially degenerate fluids, does not apply the Born-Oppenheimer approximation, and is computationally tractable, capable of modelling dynamics over ionic timescales at electronic time resolution. Bohm SPH is also capable of modelling non-Gaussian electron wavefunctions. We present an overview of our methodology, validation tests of the single particle case including the hydrogen 1s wavefunction, and comparisons to simulations of a warm dense hydrogen system performed with wave packet molecular dynamics.
Related papers
- Quantum Simulation of Spin-Boson Models with Structured Bath [1.7148514211041472]
Trapped ions present a natural platform for simulating the quantum dynamics of open quantum systems.
We demonstrate the capability for adjusting the bath's temperature and continuous spectral density by adding randomness to fully programmable control parameters.
The experimental outcomes closely align with theoretical predictions, indicating successful simulation of open quantum systems using a trapped-ion system.
arXiv Detail & Related papers (2024-05-23T14:32:04Z) - Stochastic Schr\"odinger equation approach to real-time dynamics of
Anderson-Holstein impurities: an open quantum system perspective [3.105656247358225]
We develop a framework to simulate dynamics of Anderson-Holstein impurities coupled to a continuous fermionic bath.
We show that such an SSE treatment provides a middle ground between numerically expansive microscopic simulations and master equations.
arXiv Detail & Related papers (2023-09-16T06:03:54Z) - High-Energy Collision of Quarks and Mesons in the Schwinger Model: From
Tensor Networks to Circuit QED [0.0]
We study the scattering dynamics of lattice quantum electrodynamics in 1+1 dimensions on quantum simulators.
We construct multi-particle wave-packet states, evolve them in time, and detect outgoing particles post collision.
This study highlights the role of classical and quantum simulation in enhancing our understanding of scattering processes in quantum field theories in real time.
arXiv Detail & Related papers (2023-07-05T18:00:00Z) - Ab initio electron-lattice downfolding: potential energy landscapes,
anharmonicity, and molecular dynamics in charge density wave materials [0.0]
Computational challenges arise especially for large systems, long time scales, in nonequilibrium, or in systems with strong correlations.
We show how downfolding approaches facilitate complexity reduction on the electronic side and thereby boost the simulation of electronic properties and nuclear motion.
arXiv Detail & Related papers (2023-03-13T16:41:37Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Phase-space stochastic quantum hydrodynamics for interacting Bose gases [0.0]
We derive, within the positive-P phase-space formalism, a new hydrodynamic method for the description of interacting Bose gases.
It possesses the ability to compute non-equilibrium quantum correlations, even for short-wavelength phenomena.
arXiv Detail & Related papers (2022-02-22T01:31:54Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.