Soft-Hard Attention U-Net Model and Benchmark Dataset for Multiscale Image Shadow Removal
- URL: http://arxiv.org/abs/2408.03734v1
- Date: Wed, 7 Aug 2024 12:42:06 GMT
- Title: Soft-Hard Attention U-Net Model and Benchmark Dataset for Multiscale Image Shadow Removal
- Authors: Eirini Cholopoulou, Dimitrios E. Diamantis, Dimitra-Christina C. Koutsiou, Dimitris K. Iakovidis,
- Abstract summary: This study proposes a novel deep learning architecture, named Soft-Hard Attention U-net (SHAU), focusing on multiscale shadow removal.
It provides a novel synthetic dataset, named Multiscale Shadow Removal dataset (MSRD), containing complex shadow patterns of multiple scales.
The results demonstrate the effectiveness of SHAU over the relevant state-of-the-art shadow removal methods across various benchmark datasets.
- Score: 2.999888908665659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective shadow removal is pivotal in enhancing the visual quality of images in various applications, ranging from computer vision to digital photography. During the last decades physics and machine learning -based methodologies have been proposed; however, most of them have limited capacity in capturing complex shadow patterns due to restrictive model assumptions, neglecting the fact that shadows usually appear at different scales. Also, current datasets used for benchmarking shadow removal are composed of a limited number of images with simple scenes containing mainly uniform shadows cast by single objects, whereas only a few of them include both manual shadow annotations and paired shadow-free images. Aiming to address all these limitations in the context of natural scene imaging, including urban environments with complex scenes, the contribution of this study is twofold: a) it proposes a novel deep learning architecture, named Soft-Hard Attention U-net (SHAU), focusing on multiscale shadow removal; b) it provides a novel synthetic dataset, named Multiscale Shadow Removal Dataset (MSRD), containing complex shadow patterns of multiple scales, aiming to serve as a privacy-preserving dataset for a more comprehensive benchmarking of future shadow removal methodologies. Key architectural components of SHAU are the soft and hard attention modules, which along with multiscale feature extraction blocks enable effective shadow removal of different scales and intensities. The results demonstrate the effectiveness of SHAU over the relevant state-of-the-art shadow removal methods across various benchmark datasets, improving the Peak Signal-to-Noise Ratio and Root Mean Square Error for the shadow area by 25.1% and 61.3%, respectively.
Related papers
- ShadowMamba: State-Space Model with Boundary-Region Selective Scan for Shadow Removal [3.5734732877967392]
This paper proposes a novel selective scanning method called boundary-region selective scanning.
We name our model ShadowMamba, the first Mamba-based model for shadow removal.
arXiv Detail & Related papers (2024-11-05T16:59:06Z) - Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey [78.84004293081631]
The patterns of shadows are arbitrary, varied, and often have highly complex trace structures.
The degradation caused by shadows is spatially non-uniform, resulting in inconsistencies in illumination and color between shadow and non-shadow areas.
Recent developments in this field are primarily driven by deep learning-based solutions.
arXiv Detail & Related papers (2024-07-11T20:58:38Z) - Deshadow-Anything: When Segment Anything Model Meets Zero-shot shadow
removal [8.555176637147648]
We develop Deshadow-Anything, considering the generalization of large-scale datasets, to achieve image shadow removal.
The diffusion model can diffuse along the edges and textures of an image, helping to remove shadows while preserving the details of the image.
Experiments on shadow removal tasks demonstrate that these methods can effectively improve image restoration performance.
arXiv Detail & Related papers (2023-09-21T01:35:13Z) - SDDNet: Style-guided Dual-layer Disentanglement Network for Shadow
Detection [85.16141353762445]
We treat the input shadow image as a composition of a background layer and a shadow layer, and design a Style-guided Dual-layer Disentanglement Network to model these layers independently.
Our model effectively minimizes the detrimental effects of background color, yielding superior performance on three public datasets with a real-time inference speed of 32 FPS.
arXiv Detail & Related papers (2023-08-17T12:10:51Z) - Learning Restoration is Not Enough: Transfering Identical Mapping for
Single-Image Shadow Removal [19.391619888009064]
State-of-the-art shadow removal methods train deep neural networks on collected shadow & shadow-free image pairs.
We find that two tasks exhibit poor compatibility, and using shared weights for these two tasks could lead to the model being optimized towards only one task.
We propose to handle these two tasks separately and leverage the identical mapping results to guide the shadow restoration in an iterative manner.
arXiv Detail & Related papers (2023-05-18T01:36:23Z) - ShadowFormer: Global Context Helps Image Shadow Removal [41.742799378751364]
It is still challenging for the deep shadow removal model to exploit the global contextual correlation between shadow and non-shadow regions.
We first propose a Retinex-based shadow model, from which we derive a novel transformer-based network, dubbed ShandowFormer.
A multi-scale channel attention framework is employed to hierarchically capture the global information.
We propose a Shadow-Interaction Module (SIM) with Shadow-Interaction Attention (SIA) in the bottleneck stage to effectively model the context correlation between shadow and non-shadow regions.
arXiv Detail & Related papers (2023-02-03T10:54:52Z) - Structure-Informed Shadow Removal Networks [67.57092870994029]
Existing deep learning-based shadow removal methods still produce images with shadow remnants.
We propose a novel structure-informed shadow removal network (StructNet) to leverage the image-structure information to address the shadow remnant problem.
Our method outperforms existing shadow removal methods, and our StructNet can be integrated with existing methods to improve them further.
arXiv Detail & Related papers (2023-01-09T06:31:52Z) - ShaDocNet: Learning Spatial-Aware Tokens in Transformer for Document
Shadow Removal [53.01990632289937]
We propose a Transformer-based model for document shadow removal.
It uses shadow context encoding and decoding in both shadow and shadow-free regions.
arXiv Detail & Related papers (2022-11-30T01:46:29Z) - Shadow-Aware Dynamic Convolution for Shadow Removal [80.82708225269684]
We introduce a novel Shadow-Aware Dynamic Convolution (SADC) module to decouple the interdependence between the shadow region and the non-shadow region.
Inspired by the fact that the color mapping of the non-shadow region is easier to learn, our SADC processes the non-shadow region with a lightweight convolution module.
We develop a novel intra-convolution distillation loss to strengthen the information flow from the non-shadow region to the shadow region.
arXiv Detail & Related papers (2022-05-10T14:00:48Z) - Self-Supervised Shadow Removal [130.6657167667636]
We propose an unsupervised single image shadow removal solution via self-supervised learning by using a conditioned mask.
In contrast to existing literature, we do not require paired shadowed and shadow-free images, instead we rely on self-supervision and jointly learn deep models to remove and add shadows to images.
arXiv Detail & Related papers (2020-10-22T11:33:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.