Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey
- URL: http://arxiv.org/abs/2407.08865v2
- Date: Fri, 4 Oct 2024 00:44:58 GMT
- Title: Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey
- Authors: Laniqng Guo, Chong Wang, Yufei Wang, Yi Yu, Siyu Huang, Wenhan Yang, Alex C. Kot, Bihan Wen,
- Abstract summary: The patterns of shadows are arbitrary, varied, and often have highly complex trace structures.
The degradation caused by shadows is spatially non-uniform, resulting in inconsistencies in illumination and color between shadow and non-shadow areas.
Recent developments in this field are primarily driven by deep learning-based solutions.
- Score: 78.84004293081631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shadow removal aims at restoring the image content within shadow regions, pursuing a uniform distribution of illumination that is consistent between shadow and non-shadow regions. {Comparing to other image restoration tasks, there are two unique challenges in shadow removal:} 1) The patterns of shadows are arbitrary, varied, and often have highly complex trace structures, making ``trace-less'' image recovery difficult. 2) The degradation caused by shadows is spatially non-uniform, resulting in inconsistencies in illumination and color between shadow and non-shadow areas. Recent developments in this field are primarily driven by deep learning-based solutions, employing a variety of learning strategies, network architectures, loss functions, and training data. Nevertheless, a thorough and insightful review of deep learning-based shadow removal techniques is still lacking. In this paper, we are the first to provide a comprehensive survey to cover various aspects ranging from technical details to applications. We highlight the major advancements in deep learning-based single-image shadow removal methods, thoroughly review previous research across various categories, and provide insights into the historical progression of these developments. Additionally, we summarize performance comparisons both quantitatively and qualitatively. Beyond the technical aspects of shadow removal methods, we also explore potential future directions for this field.
Related papers
- Unveiling Deep Shadows: A Survey on Image and Video Shadow Detection, Removal, and Generation in the Era of Deep Learning [81.15890262168449]
Shadows are formed when light encounters obstacles, leading to areas of diminished illumination.
In computer vision, shadow detection, removal, and generation are crucial for enhancing scene understanding, refining image quality, ensuring visual consistency in video editing, and improving virtual environments.
This paper presents a comprehensive survey of shadow detection, removal, and generation in images and videos within the deep learning landscape over the past decade, covering tasks, deep models, datasets, and evaluation metrics.
arXiv Detail & Related papers (2024-09-03T17:59:05Z) - Soft-Hard Attention U-Net Model and Benchmark Dataset for Multiscale Image Shadow Removal [2.999888908665659]
This study proposes a novel deep learning architecture, named Soft-Hard Attention U-net (SHAU), focusing on multiscale shadow removal.
It provides a novel synthetic dataset, named Multiscale Shadow Removal dataset (MSRD), containing complex shadow patterns of multiple scales.
The results demonstrate the effectiveness of SHAU over the relevant state-of-the-art shadow removal methods across various benchmark datasets.
arXiv Detail & Related papers (2024-08-07T12:42:06Z) - Structure-Informed Shadow Removal Networks [67.57092870994029]
Existing deep learning-based shadow removal methods still produce images with shadow remnants.
We propose a novel structure-informed shadow removal network (StructNet) to leverage the image-structure information to address the shadow remnant problem.
Our method outperforms existing shadow removal methods, and our StructNet can be integrated with existing methods to improve them further.
arXiv Detail & Related papers (2023-01-09T06:31:52Z) - Estimating Reflectance Layer from A Single Image: Integrating
Reflectance Guidance and Shadow/Specular Aware Learning [66.36104525390316]
We propose a two-stage learning method, including reflectance guidance and a Shadow/Specular-Aware (S-Aware) network to tackle the problem.
In the first stage, an initial reflectance layer free from shadows and specularities is obtained with the constraint of novel losses.
To further enforce the reflectance layer to be independent of shadows and specularities in the second-stage refinement, we introduce an S-Aware network that distinguishes the reflectance image from the input image.
arXiv Detail & Related papers (2022-11-27T07:26:41Z) - Shadow-Aware Dynamic Convolution for Shadow Removal [80.82708225269684]
We introduce a novel Shadow-Aware Dynamic Convolution (SADC) module to decouple the interdependence between the shadow region and the non-shadow region.
Inspired by the fact that the color mapping of the non-shadow region is easier to learn, our SADC processes the non-shadow region with a lightweight convolution module.
We develop a novel intra-convolution distillation loss to strengthen the information flow from the non-shadow region to the shadow region.
arXiv Detail & Related papers (2022-05-10T14:00:48Z) - Self-Supervised Shadow Removal [130.6657167667636]
We propose an unsupervised single image shadow removal solution via self-supervised learning by using a conditioned mask.
In contrast to existing literature, we do not require paired shadowed and shadow-free images, instead we rely on self-supervision and jointly learn deep models to remove and add shadows to images.
arXiv Detail & Related papers (2020-10-22T11:33:41Z) - From Shadow Segmentation to Shadow Removal [34.762493656937366]
The requirement for paired shadow and shadow-free images limits the size and diversity of shadow removal datasets.
We propose a shadow removal method that can be trained using only shadow and non-shadow patches cropped from the shadow images themselves.
arXiv Detail & Related papers (2020-08-01T14:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.