論文の概要: Intuitionistic Fuzzy Cognitive Maps for Interpretable Image Classification
- arxiv url: http://arxiv.org/abs/2408.03745v1
- Date: Wed, 7 Aug 2024 12:58:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 13:04:22.987831
- Title: Intuitionistic Fuzzy Cognitive Maps for Interpretable Image Classification
- Title(参考訳): 解釈可能な画像分類のための直観的ファジィ認知マップ
- Authors: Georgia Sovatzidi, Michael D. Vasilakakis, Dimitris K. Iakovidis,
- Abstract要約: 本稿では,ドメインに依存しない,実装が容易で,CNNモデルに適用可能な新しいフレームワークであるInterpretable Intuitionistic FCM(I2FCM)を紹介する。
我々の知る限りでは、iFCMを画像分類に適用するのはこれが初めてである。
- 参考スコア(独自算出の注目度): 2.130156029408832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interpretability of machine learning models is critical, as users may be reluctant to rely on their inferences. Intuitionistic FCMs (iFCMs) have been proposed as an extension of FCMs offering a natural mechanism to assess the quality of their output through the estimation of hesitancy, a concept resembling to human hesitation in decision making. To address the challenge of interpretable image classification, this paper introduces a novel framework, named Interpretable Intuitionistic FCM (I2FCM) which is domain-independent, simple to implement, and can be applied on Convolutional Neural Network (CNN) models, rendering them interpretable. To the best of our knowledge this is the first time iFCMs are applied for image classification. Further novel contributions include: a feature extraction process focusing on the most informative image regions; a learning algorithm for data-driven determination of the intuitionistic fuzzy interconnections of the iFCM; an inherently interpretable classification approach based on image contents. In the context of image classification, hesitancy is considered as a degree of inconfidence with which an image is categorized to a class. The constructed iFCM model distinguishes the most representative image semantics and analyses them utilizing cause-and-effect relations. The effectiveness of the introduced framework is evaluated on publicly available datasets, and the experimental results confirm that it can provide enhanced classification performance, while providing interpretable inferences.
- Abstract(参考訳): 機械学習モデルの解釈可能性は非常に重要です。
直観主義的FCM (iFCMs) は, 意思決定における人間のためらいに類似した概念であるヘシタシーの推定を通じて, アウトプットの品質を評価する自然なメカニズムを提供するFCMの拡張として提案されている。
本稿では,解釈可能な画像分類の課題に対処するため,ドメイン独立で実装が簡単で,畳み込みニューラルネットワーク(CNN)モデルに適用可能な新しいフレームワークであるInterpretable Intuitionistic FCM(I2FCM)を提案する。
我々の知る限りでは、iFCMを画像分類に適用するのはこれが初めてである。
さらに新しい貢献として、最も情報性の高い画像領域に焦点を当てた特徴抽出プロセス、iFCMの直観的ファジィ相互接続をデータ駆動で決定する学習アルゴリズム、画像内容に基づいた本質的に解釈可能な分類アプローチなどがある。
画像分類の文脈では、画像がクラスに分類される不信度と見なされる。
構築されたiFCMモデルは、最も代表的な画像意味論を識別し、原因と効果の関係を利用して解析する。
導入したフレームワークの有効性は,公開データセット上で評価され,実験結果から,解釈可能な推論を提供しながら,分類性能を向上できることが確認された。
関連論文リスト
- Causality-Driven One-Shot Learning for Prostate Cancer Grading from MRI [1.049712834719005]
本稿では,画像中の弱い因果信号を学習し,活用する医用画像の自動分類手法を提案する。
我々のフレームワークは畳み込みニューラルネットワークのバックボーンと因果抽出モジュールで構成されている。
本研究は,特徴間の因果関係が,関連情報を識別するモデルの能力を高める上で重要な役割を担っていることを示す。
論文 参考訳(メタデータ) (2023-09-19T16:08:33Z) - Feature Activation Map: Visual Explanation of Deep Learning Models for
Image Classification [17.373054348176932]
本研究では,機能活性化マップ (FAM) と呼ばれるポストホック解釈ツールを提案する。
FAMは、FC層を分類器として使用せずにディープラーニングモデルを解釈できる。
提案したFAMアルゴリズムの有効性を実証するために,10種類の深層学習モデルを用いて,少数ショット画像分類,コントラスト学習画像分類,画像検索タスクを行った。
論文 参考訳(メタデータ) (2023-07-11T05:33:46Z) - Learning disentangled representations for explainable chest X-ray
classification using Dirichlet VAEs [68.73427163074015]
本研究では,胸部X線像の非絡み合った潜在表現の学習にDirVAE(Dirichlet Variational Autoencoder)を用いることを検討した。
DirVAEモデルにより学習された多モード潜在表現の予測能力について,補助的多ラベル分類タスクの実装により検討した。
論文 参考訳(メタデータ) (2023-02-06T18:10:08Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPM) は様々な画像生成タスクにおいて顕著な成功を収めた。
セマンティック画像合成に関する最近の研究は、主に「GAN(Generative Adversarial Nets)」に追従している。
論文 参考訳(メタデータ) (2022-06-30T18:31:51Z) - Semantic Representation and Dependency Learning for Multi-Label Image
Recognition [76.52120002993728]
本稿では,各カテゴリのカテゴリ固有のセマンティック表現を学習するための,新しい,効果的なセマンティック表現と依存性学習(SRDL)フレームワークを提案する。
具体的には,カテゴリー別注意領域(CAR)モジュールを設計し,チャネル/空間的注意行列を生成してモデルを導出する。
また、カテゴリ間のセマンティック依存を暗黙的に学習するオブジェクト消去(OE)モジュールを設計し、セマンティック認識領域を消去する。
論文 参考訳(メタデータ) (2022-04-08T00:55:15Z) - NDPNet: A novel non-linear data projection network for few-shot
fine-grained image classification [33.71025164816078]
本稿では,非線形データ投影の概念を,メートル法に基づくきめ細かい画像分類アーキテクチャの設計に導入する。
提案したアーキテクチャは,任意のエピソードトレーニング機構にスクラッチからエンド・ツー・エンド・トレーニングに簡単に組み込むことができる。
論文 参考訳(メタデータ) (2021-06-13T13:33:09Z) - A-FMI: Learning Attributions from Deep Networks via Feature Map
Importance [58.708607977437794]
勾配に基づくアトリビューション法は畳み込みニューラルネットワーク(CNN)の理解を助けることができる
帰属特徴の冗長性と勾配飽和問題は、帰属方法がまだ直面する課題である。
本稿では,各特徴マップの寄与度を高めるための新しい概念,特徴マップ重要度 (FMI) と,勾配飽和問題に対処するためのFMIによる新しい帰属法を提案する。
論文 参考訳(メタデータ) (2021-04-12T14:54:44Z) - Convolutional Neural Networks from Image Markers [62.997667081978825]
特徴 画像マーカーからの学習(FLIM)は、ごく少数の画像でユーザーが描画したストロークから、バックプロパゲーションのない畳み込みフィルタを推定するために最近提案されました。
本稿では、フルコネクテッド層に対してFLIMを拡張し、異なる画像分類問題について実証する。
その結果、FLIMベースの畳み込みニューラルネットワークは、バックプロパゲーションによってゼロから訓練された同じアーキテクチャを上回ります。
論文 参考訳(メタデータ) (2020-12-15T22:58:23Z) - Evaluating and Mitigating Bias in Image Classifiers: A Causal
Perspective Using Counterfactuals [27.539001365348906]
本稿では、逆学習推論(ALI)の改良版に構造因果モデル(SCM)を組み込むことにより、逆ファクトアルを生成する方法を提案する。
本稿では,事前学習された機械学習分類器の説明方法を示し,そのバイアスを評価し,そのバイアスを正則化器を用いて緩和する方法について述べる。
論文 参考訳(メタデータ) (2020-09-17T13:19:31Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
本稿では,特徴分解ネットワークと対象画像分類モデルとを協調的に最適化する,PFDL(Partial Feature Deorrelation Learning)アルゴリズムを提案する。
実世界のデータセットを用いた実験により,OOD画像分類データセットにおけるバックボーンモデルの精度が向上することを示した。
論文 参考訳(メタデータ) (2020-07-30T05:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。