'Finance Wizard' at the FinLLM Challenge Task: Financial Text Summarization
- URL: http://arxiv.org/abs/2408.03762v1
- Date: Wed, 7 Aug 2024 13:31:44 GMT
- Title: 'Finance Wizard' at the FinLLM Challenge Task: Financial Text Summarization
- Authors: Meisin Lee, Soon Lay-Ki,
- Abstract summary: This paper documents our pipeline approach of fine-tuning a foundation model into a task-specific model for Financial Text Summarization.
Our model, FinLlama3_sum, yielded commendable results, securing the third position in its category with a ROUGE-1 score of 0.521.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents our participation under the team name `Finance Wizard' in the FinNLP-AgentScen 2024 shared task #2: Financial Text Summarization. It documents our pipeline approach of fine-tuning a foundation model into a task-specific model for Financial Text Summarization. It involves (1) adapting Llama3 8B, a foundation model, to the Finance domain via continued pre-training, (2) multi-task instruction-tuning to further equip the model with more finance-related capabilities, (3) finally fine-tuning the model into a task-specific `expert'. Our model, FinLlama3\_sum, yielded commendable results, securing the third position in its category with a ROUGE-1 score of 0.521.
Related papers
- Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications [90.67346776473241]
Large language models (LLMs) have advanced financial applications, yet they often lack sufficient financial knowledge and struggle with tasks involving multi-modal inputs like tables and time series data.
We introduce textitOpen-FinLLMs, a series of Financial LLMs that embed comprehensive financial knowledge into text, tables, and time-series data.
We also present FinLLaVA, a multimodal LLM trained with 1.43M image-text instructions to handle complex financial data types.
arXiv Detail & Related papers (2024-08-20T16:15:28Z) - L3iTC at the FinLLM Challenge Task: Quantization for Financial Text Classification & Summarization [2.111699987679628]
FinLLM Challenge Task 2024 focused on two key areas: Task 1, financial text classification, and Task 2, financial text summarization.
We fine-tuned several large language models (LLMs) to optimize performance for each task.
Our models achieved third place for the financial classification task with an F1-score of 0.7543 and secured sixth place in the financial summarization task on the official test datasets.
arXiv Detail & Related papers (2024-08-06T08:25:49Z) - SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models [6.639972934967109]
Large language models (LLMs) have become powerful tools for advancing natural language processing applications in the financial industry.
We propose a novel large language model specifically designed for the Chinese financial domain, named SNFinLLM.
SNFinLLM excels in domain-specific tasks such as answering questions, summarizing financial research reports, analyzing sentiment, and executing financial calculations.
arXiv Detail & Related papers (2024-08-05T08:24:24Z) - CatMemo at the FinLLM Challenge Task: Fine-Tuning Large Language Models using Data Fusion in Financial Applications [10.225210627594894]
This paper presents our solution to IJCAI-2024 FinLLM challenge, investigating the capabilities of LLMs within three critical areas of financial tasks.
Financial classification, financial text summarization, and single stock trading are investigated.
Our approach aims to tackle these diverse tasks in a comprehensive and integrated manner, showcasing LLMs' capacity to address diverse and complex financial tasks with improved accuracy and decision-making capabilities.
arXiv Detail & Related papers (2024-07-02T05:04:13Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBen is the first extensive open-source evaluation benchmark, including 36 datasets spanning 24 financial tasks.
FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and three novel open-source evaluation datasets for text summarization, question answering, and stock trading.
arXiv Detail & Related papers (2024-02-20T02:16:16Z) - FinTral: A Family of GPT-4 Level Multimodal Financial Large Language Models [18.280762424107408]
FinTral is a suite of state-of-the-art multimodal large language models (LLMs) built upon the Mistral-7b model.
We enhance FinTral with domain-specific pretraining, instruction fine-tuning, and RLAIF training.
Our FinTral model trained with direct preference optimization employing advanced Tools and Retrieval methods, dubbed FinTral-DPO-T&R, demonstrates an exceptional zero-shot performance.
arXiv Detail & Related papers (2024-02-16T05:05:12Z) - DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple
Experts Fine-tuning [74.99318727786337]
We propose Multiple Experts Fine-tuning Framework to build a financial large language model (LLM)
We build a financial instruction-tuning dataset named DISC-FIN-SFT, including instruction samples of four categories (consulting, NLP tasks, computing and retrieval-augmented generation)
Evaluations conducted on multiple benchmarks demonstrate that our model performs better than baseline models in various financial scenarios.
arXiv Detail & Related papers (2023-10-23T11:33:41Z) - Pushing the Limits of ChatGPT on NLP Tasks [79.17291002710517]
Despite the success of ChatGPT, its performances on most NLP tasks are still well below the supervised baselines.
In this work, we looked into the causes, and discovered that its subpar performance was caused by the following factors.
We propose a collection of general modules to address these issues, in an attempt to push the limits of ChatGPT on NLP tasks.
arXiv Detail & Related papers (2023-06-16T09:40:05Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z) - FinBERT-MRC: financial named entity recognition using BERT under the
machine reading comprehension paradigm [8.17576814961648]
We formulate the FinNER task as a machine reading comprehension (MRC) problem and propose a new model termed FinBERT-MRC.
This formulation introduces significant prior information by utilizing well-designed queries, and extracts start index and end index of target entities.
We conduct experiments on a publicly available Chinese financial dataset ChFinAnn and a real-word dataset AdminPunish.
arXiv Detail & Related papers (2022-05-31T00:44:57Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
We focus on answering deep questions over financial data, aiming to automate the analysis of a large corpus of financial documents.
We propose a new large-scale dataset, FinQA, with Question-Answering pairs over Financial reports, written by financial experts.
The results demonstrate that popular, large, pre-trained models fall far short of expert humans in acquiring finance knowledge.
arXiv Detail & Related papers (2021-09-01T00:08:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.