Dual-Modeling Decouple Distillation for Unsupervised Anomaly Detection
- URL: http://arxiv.org/abs/2408.03888v2
- Date: Tue, 15 Oct 2024 05:51:38 GMT
- Title: Dual-Modeling Decouple Distillation for Unsupervised Anomaly Detection
- Authors: Xinyue Liu, Jianyuan Wang, Biao Leng, Shuo Zhang,
- Abstract summary: Over-generalization of the student network to the teacher network may lead to negligible differences in representation capabilities of anomaly.
Existing methods address the possible over-generalization by using differentiated students and teachers from the structural perspective.
We propose Dual-Modeling Decouple Distillation (DMDD) for the unsupervised anomaly detection.
- Score: 15.89869857998053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge distillation based on student-teacher network is one of the mainstream solution paradigms for the challenging unsupervised Anomaly Detection task, utilizing the difference in representation capabilities of the teacher and student networks to implement anomaly localization. However, over-generalization of the student network to the teacher network may lead to negligible differences in representation capabilities of anomaly, thus affecting the detection effectiveness. Existing methods address the possible over-generalization by using differentiated students and teachers from the structural perspective or explicitly expanding distilled information from the content perspective, which inevitably result in an increased likelihood of underfitting of the student network and poor anomaly detection capabilities in anomaly center or edge. In this paper, we propose Dual-Modeling Decouple Distillation (DMDD) for the unsupervised anomaly detection. In DMDD, a Decouple Student-Teacher Network is proposed to decouple the initial student features into normality and abnormality features. We further introduce Dual-Modeling Distillation based on normal-anomaly image pairs, fitting normality features of anomalous image and the teacher features of the corresponding normal image, widening the distance between abnormality features and the teacher features in anomalous regions. Synthesizing these two distillation ideas, we achieve anomaly detection which focuses on both edge and center of anomaly. Finally, a Multi-perception Segmentation Network is proposed to achieve focused anomaly map fusion based on multiple attention. Experimental results on MVTec AD show that DMDD surpasses SOTA localization performance of previous knowledge distillation-based methods, reaching 98.85% on pixel-level AUC and 96.13% on PRO.
Related papers
- Structural Teacher-Student Normality Learning for Multi-Class Anomaly
Detection and Localization [17.543208086457234]
We introduce a novel approach known as Structural Teacher-Student Normality Learning (SNL)
We evaluate our proposed approach on two anomaly detection datasets, MVTecAD and VisA.
Our method surpasses the state-of-the-art distillation-based algorithms by a significant margin of 3.9% and 1.5% on MVTecAD and 1.2% and 2.5% on VisA.
arXiv Detail & Related papers (2024-02-27T00:02:24Z) - Dual-Student Knowledge Distillation Networks for Unsupervised Anomaly
Detection [2.06682776181122]
Student-teacher networks (S-T) are favored in unsupervised anomaly detection.
However, vanilla S-T networks are not stable.
We propose a novel dual-student knowledge distillation architecture.
arXiv Detail & Related papers (2024-02-01T09:32:39Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
We propose a framework called Prototypical Residual Network (PRN)
PRN learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions.
We present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies.
arXiv Detail & Related papers (2022-12-05T05:03:46Z) - ADPS: Asymmetric Distillation Post-Segmentation for Image Anomaly
Detection [75.68023968735523]
Knowledge Distillation-based Anomaly Detection (KDAD) methods rely on the teacher-student paradigm to detect and segment anomalous regions.
We propose an innovative approach called Asymmetric Distillation Post-Segmentation (ADPS)
Our ADPS employs an asymmetric distillation paradigm that takes distinct forms of the same image as the input of the teacher-student networks.
We show that ADPS significantly improves Average Precision (AP) metric by 9% and 20% on the MVTec AD and KolektorSDD2 datasets.
arXiv Detail & Related papers (2022-10-19T12:04:47Z) - Asymmetric Student-Teacher Networks for Industrial Anomaly Detection [22.641661538154054]
This work discovers previously unknown problems of student-teacher approaches for anomaly detection.
Two neural networks are trained to produce the same output for the defect-free training examples.
Our method produces state-of-the-art results on the two currently most relevant defect detection datasets MVTec AD and MVTec 3D-AD.
arXiv Detail & Related papers (2022-10-14T13:56:50Z) - Anomaly Detection via Reverse Distillation from One-Class Embedding [2.715884199292287]
We propose a novel T-S model consisting of a teacher encoder and a student decoder.
Instead of receiving raw images directly, the student network takes teacher model's one-class embedding as input.
In addition, we introduce a trainable one-class bottleneck embedding module in our T-S model.
arXiv Detail & Related papers (2022-01-26T01:48:37Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - Wasserstein Contrastive Representation Distillation [114.24609306495456]
We propose Wasserstein Contrastive Representation Distillation (WCoRD), which leverages both primal and dual forms of Wasserstein distance for knowledge distillation.
The dual form is used for global knowledge transfer, yielding a contrastive learning objective that maximizes the lower bound of mutual information between the teacher and the student networks.
Experiments demonstrate that the proposed WCoRD method outperforms state-of-the-art approaches on privileged information distillation, model compression and cross-modal transfer.
arXiv Detail & Related papers (2020-12-15T23:43:28Z) - Differentiable Feature Aggregation Search for Knowledge Distillation [47.94874193183427]
We introduce the feature aggregation to imitate the multi-teacher distillation in the single-teacher distillation framework.
DFA is a two-stage Differentiable Feature Aggregation search method motivated by DARTS in neural architecture search.
Experimental results show that DFA outperforms existing methods on CIFAR-100 and CINIC-10 datasets.
arXiv Detail & Related papers (2020-08-02T15:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.