論文の概要: AdapMTL: Adaptive Pruning Framework for Multitask Learning Model
- arxiv url: http://arxiv.org/abs/2408.03913v1
- Date: Wed, 7 Aug 2024 17:19:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 12:35:07.557164
- Title: AdapMTL: Adaptive Pruning Framework for Multitask Learning Model
- Title(参考訳): AdapMTL:マルチタスク学習モデルのための適応型プルーニングフレームワーク
- Authors: Mingcan Xiang, Steven Jiaxun Tang, Qizheng Yang, Hui Guan, Tongping Liu,
- Abstract要約: AdapMTLはマルチタスクモデルのための適応型プルーニングフレームワークである。
複数のタスクにまたがって、空間割り当てと精度のパフォーマンスのバランスをとる。
最先端の刈り取り法に比べて優れた性能を示す。
- 参考スコア(独自算出の注目度): 5.643658120200373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the domain of multimedia and multimodal processing, the efficient handling of diverse data streams such as images, video, and sensor data is paramount. Model compression and multitask learning (MTL) are crucial in this field, offering the potential to address the resource-intensive demands of processing and interpreting multiple forms of media simultaneously. However, effectively compressing a multitask model presents significant challenges due to the complexities of balancing sparsity allocation and accuracy performance across multiple tasks. To tackle these challenges, we propose AdapMTL, an adaptive pruning framework for MTL models. AdapMTL leverages multiple learnable soft thresholds independently assigned to the shared backbone and the task-specific heads to capture the nuances in different components' sensitivity to pruning. During training, it co-optimizes the soft thresholds and MTL model weights to automatically determine the suitable sparsity level at each component to achieve both high task accuracy and high overall sparsity. It further incorporates an adaptive weighting mechanism that dynamically adjusts the importance of task-specific losses based on each task's robustness to pruning. We demonstrate the effectiveness of AdapMTL through comprehensive experiments on popular multitask datasets, namely NYU-v2 and Tiny-Taskonomy, with different architectures, showcasing superior performance compared to state-of-the-art pruning methods.
- Abstract(参考訳): マルチメディアおよびマルチモーダル処理の分野では、画像、ビデオ、センサーデータなどの多様なデータストリームの効率的な処理が最重要である。
この分野ではモデル圧縮とマルチタスク学習(MTL)が不可欠であり、複数のメディアを同時に処理し解釈するリソース集約的な要求に対処する能力を提供する。
しかし、マルチタスクモデルを効果的に圧縮することは、複数のタスクにまたがる空間割当と精度性能のバランスの複雑さにより、大きな課題を生じさせる。
これらの課題に対処するために,MTLモデルの適応型プルーニングフレームワークであるAdapMTLを提案する。
AdapMTLは、共有バックボーンとタスク固有のヘッドに独立して割り当てられた複数の学習可能なソフトしきい値を利用して、異なるコンポーネントのプルーニングに対する感度でニュアンスをキャプチャする。
トレーニング中、ソフトしきい値とMTLモデルの重みを共同で最適化し、各コンポーネントの適切な疎度レベルを自動的に決定し、高いタスク精度と全体的な疎度の両方を達成する。
さらに、各タスクのプルーニングに対する堅牢性に基づいてタスク固有の損失の重要性を動的に調整する適応重み付け機構も組み込まれている。
本稿では,一般的なマルチタスクデータセットであるNYU-v2とTiny-Taskonomyの総合的な実験を通じて,AdapMTLの有効性を示す。
関連論文リスト
- A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
ハイパースペクトル画像上で複数の分類タスクと回帰タスクを同時に行うマルチタスク深層学習モデルを提案する。
我々は、TAIGAと呼ばれる大規模なハイパースペクトルデータセットに対するアプローチを検証した。
結果の総合的定性的および定量的分析により,提案手法が他の最先端手法よりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2024-07-23T11:14:54Z) - Giving each task what it needs -- leveraging structured sparsity for tailored multi-task learning [4.462334751640166]
マルチタスク学習(MTL)フレームワークでは、各タスクは、低レベルから高レベルの属性まで、異なる特徴表現を要求する。
この研究は、構造化された空間を利用して個々のタスクの特徴選択を洗練し、マルチタスクシナリオにおける全てのタスクのパフォーマンスを向上させるレイヤdマルチタスクモデルを導入する。
論文 参考訳(メタデータ) (2024-06-05T08:23:38Z) - MmAP : Multi-modal Alignment Prompt for Cross-domain Multi-task Learning [29.88567810099265]
マルチタスク学習は複数の相関タスクを同時に訓練するように設計されている。
この課題に対処するために、デコーダフリーの視覚言語モデルCLIPを統合する。
CLIPのためのマルチモーダルアライメント・プロンプト(MmAP)を提案する。
論文 参考訳(メタデータ) (2023-12-14T03:33:02Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
本稿では、複数の視覚タスクを実行でき、他の下流タスクに効率的に適応できるモデルを提案する。
提案手法は,単一タスク状態モデルに匹敵する結果を達成し,下流タスクの強力な一般化を実証する。
論文 参考訳(メタデータ) (2023-06-29T17:59:57Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) は、トランスフォーマーのバックボーンを組み込んだ拡散に基づく手法であり、生成計画とデータ合成のための素早い学習を行う。
生成計画において、textscMTDiffはMeta-World上の50のタスクとMaze2D上の8のマップで最先端のアルゴリズムより優れています。
論文 参考訳(メタデータ) (2023-05-29T05:20:38Z) - Task Aware Feature Extraction Framework for Sequential Dependence
Multi-Task Learning [1.0765359420035392]
我々は厳密な数学的観点から逐次依存型MLLを解析する。
逐次依存型MLLのためのタスク認識特徴抽出(TAFE)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-06T13:12:59Z) - M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task
Learning with Model-Accelerator Co-design [95.41238363769892]
マルチタスク学習(MTL)は、複数の学習タスクを単一のモデルにカプセル化し、それらのタスクを共同でよりよく学習できるようにする。
現在のMTLレギュレータは、1つのタスクだけを実行するためにさえ、ほぼすべてのモデルを起動する必要がある。
効率的なオンデバイスMTLを実現するためのモデル-アクセラレータ共設計フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-26T15:40:24Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
本稿では,そのアーキテクチャと重みを動的に調整し,所望のタスク選択とリソース制約に適合させる制御可能なマルチタスクネットワークを提案する。
本稿では,タスク親和性と分岐正規化損失を利用した2つのハイパーネットの非交互トレーニングを提案し,入力の嗜好を取り入れ,適応重み付き木構造モデルを予測する。
論文 参考訳(メタデータ) (2022-03-28T17:56:40Z) - Controllable Pareto Multi-Task Learning [55.945680594691076]
マルチタスク学習システムは,複数のタスクを同時に解決することを目的としている。
固定されたモデルキャパシティでは、タスクは互いに衝突し、システムは通常、それらすべてを学ぶためにトレードオフをしなければならない。
本研究では,異なるタスク間のリアルタイムなトレードオフ制御を実現するための,新しい制御可能なマルチタスク学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-13T11:53:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。