The Born rule for quantum probabilities from Newton's third law
- URL: http://arxiv.org/abs/2408.03941v2
- Date: Fri, 16 Aug 2024 14:54:23 GMT
- Title: The Born rule for quantum probabilities from Newton's third law
- Authors: S. S. Afonin,
- Abstract summary: According to the Born rule, the probability density in quantum theory is determined by the square of the wave function.
A generally accepted derivation of this rule has not yet been proposed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: According to the Born rule, the probability density in quantum theory is determined by the square of the wave function. A generally accepted derivation of this rule has not yet been proposed. In the given work, a simple physical picture is constructed within which the Born rule arises in a natural way. In the proposed scheme, the interaction of a particle with a measuring apparatus is equivalent to creation of a "mirror image" of particle wave function in the space region of interaction. The observable quantity is the product of the particle wave function and its "image". The phase of the latter is reversed due to Newton's third law, thus leading to the Born rule.
Related papers
- A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Relaxation to quantum equilibrium and the Born rule in Nelson's
stochastic dynamics [0.1315429617442362]
Nelson's quantum mechanics provides an ideal arena to test how the Born rule is established.
For all cases, Nelson's trajectories are initially localized at a definite position.
arXiv Detail & Related papers (2023-05-06T16:10:39Z) - A probabilistic view of wave-particle duality for single photons [0.0]
We show that the simultaneous measurement of the wave amplitude and the number of photons in the same beam of light is prohibited by the laws of quantum mechanics.
Our results suggest that the concept of interferometric duality'' could be eventually replaced by the more general one of continuous-vs-discrete duality''
arXiv Detail & Related papers (2023-03-27T13:21:25Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Ehrenfest theorem in relativistic quantum theory [0.0]
We extend the classic Ehrenfest result to the relativistic domain by deriving directly Newton's second law.
The derivation is based on the conservation laws for the energy and momentum.
arXiv Detail & Related papers (2021-11-21T11:44:42Z) - The Origin of the Born Rule from Spacetime Averaging [0.0]
We consider a particle in a one-dimensional square well potential in a superposition of two states and average the energy over space and time.
We show that, for most cases, such an energy expectation value differs by only a few percent from that calculated using the Born rule.
This difference is consistent with experimental tests of the expectation value and suggests that the Born rule may be an approximation of spacetime averaging.
arXiv Detail & Related papers (2021-10-12T23:02:11Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - On the conditions for the classicality of a quantum particle [0.0]
The one-dimensional (1D) and three-dimensional (3D) problems are considered.
It is shown that the sum of the contributions from all quantum corrections strictly vanishes, when a quantum particle interacts with some specific medium.
The momenta of quantum particles in these media and the wave functions of stationary states are determined.
arXiv Detail & Related papers (2020-07-23T09:54:12Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.