Superradiant Interactions of the Cosmic Neutrino Background, Axions, Dark Matter, and Reactor Neutrinos
- URL: http://arxiv.org/abs/2408.04021v2
- Date: Mon, 4 Nov 2024 23:40:43 GMT
- Title: Superradiant Interactions of the Cosmic Neutrino Background, Axions, Dark Matter, and Reactor Neutrinos
- Authors: Asimina Arvanitaki, Savas Dimopoulos, Marios Galanis,
- Abstract summary: We compute the superradiant interaction rates for the Cosmic Neutrino Background (C$nu$B), dark matter scattering and absorption, and late-universe particles.
We show that these superradiant interactions can manifest as a source of noise on the system.
This points to new observables, sensitive to the sum of the excitation and de-excitation rates, and can be viewed as introducing diffusion and decoherence to the system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we do three things. First, we outline the conditions under which the interaction rate of inelastic processes that change the internal state of a system of $N$ targets scales as $N^2$. This is an effect distinct from coherent elastic scattering, but with the same scaling. Second, we compute rates for such processes for various weakly interacting particles. Finally, we point to potential quantum observables for these processes, beyond energy exchange. Maximal coherence in inelastic processes is achieved when the targets are placed in an equal superposition of the ground and excited states. These coherent inelastic processes are analogous to Dicke superradiance, and we thus refer to them as superradiant interactions. We compute the superradiant interaction rates for the Cosmic Neutrino Background (C$\nu$B), dark matter scattering and absorption, and late-universe particles, such as reactor neutrinos, when the two-level system is realized by nuclear or electron spins in a magnetic field. The rates can be sizeable on macroscopic yet small targets. For example, the C$\nu$B interacts with a rate of $\mathcal{O}(\text{Hz})$ when scattering off a 10~cm liquid or solid-state density spin-polarized sphere, a $\mathcal{O}(10^{21})$ enhancement compared to the incoherent contribution. For QCD axion dark matter, similar rates can be achieved with much smaller samples, $N \sim \mathcal{O}(10^{15})\left(\frac{m}{2\times 10^{-8}~\text{eV}}\right)^{-1/2}$, where $m$ is the axion mass. Using the Lindblad formalism, we show that these superradiant interactions can manifest as a source of noise on the system. This points to new observables, sensitive to the sum of the excitation and de-excitation rates, and can be viewed as introducing diffusion and decoherence to the system. The effects presented in this paper may point to a new class of ultra-low threshold detectors.
Related papers
- Hamiltonians for Quantum Systems with Contact Interactions [49.1574468325115]
We show that in the limit one obtains the one-body Hamiltonian for the light particle subject to $N$ (non-local) point interactions placed at fixed positions.
We will verify that such non-local point interactions do not exhibit the ultraviolet pathologies that are present in the case of standard local point interactions.
arXiv Detail & Related papers (2024-07-09T14:04:11Z) - Cooperative quantum tunneling of the magnetization in Fe-doped Li$_3$N [0.0]
The spin-reversal in dilute Li$$$(Li$_1-x$Fe$_x$)N with $x 1$ % is dominated by resonant quantum tunneling of spatially well-separated states.
We report on the effect of finite couplings between those states that give rise to cooperative, simultaneous quantum tunneling of two spins.
arXiv Detail & Related papers (2023-10-27T14:59:42Z) - Quantum Control of Atom-Ion Charge Exchange via Light-induced Conical
Intersections [66.33913750180542]
Conical intersections are crossing points or lines between two or more adiabatic electronic potential energy surfaces.
We predict significant or measurable non-adiabatic effects in an ultracold atom-ion charge-exchange reaction.
In the laser frequency window, where conical interactions are present, the difference in rate coefficients can be as large as $10-9$ cm$3$/s.
arXiv Detail & Related papers (2023-04-15T14:43:21Z) - Spin-zero bound states on the 2D Klein-Gordon equation under uniform
magnetic field [0.0]
We present an interaction modeling for the relativistic spin-0 charged particles moving in a uniform magnetic field.
As a functional approach to the nuclear interaction, we consider particle bound states without antiparticle regime.
Putting the approximation to spin-zero motion with $V(r)$$neq$$0$ and $S(r)$$=$$0$, one can introduced solvable model in the 2D polar space.
arXiv Detail & Related papers (2022-08-09T13:28:23Z) - Full counting statistics of interacting lattice gases after an
expansion: The role of the condensate depletion in the many-body coherence [55.41644538483948]
We study the full counting statistics (FCS) of quantum gases in samples of thousands of interacting bosons.
FCS reveals the many-body coherence from which we characterize iconic states of interacting lattice bosons.
arXiv Detail & Related papers (2022-07-28T13:21:57Z) - Laser Manipulation of Spin-Exchange Interaction Between Alkaline-Earth
Atoms in $^1$S$_0$ and $^3$P$_2$ States [14.119534067895096]
We show that due to the structure of alkaline-earth (like) atoms, the heating effects induced by the laser beams of our methods are very weak.
As a result, the Feshbach resonances, with which one can efficiently control the SEI by changing the laser intensity, may be induced by the laser beams with low-enough heating rate.
arXiv Detail & Related papers (2021-11-04T14:49:19Z) - Near-threshold scaling of resonant inelastic collisions at ultralow
temperatures [0.0]
Cross sections for a broad range of resonant it inelastic processes exhibit an unconventional near-threshold scaling $EDelta m_12$.
For collisions dominated by even partial waves (such as those of identical bosons in the same internal state) the scaling is modified to $sigma_textinelpropto EDelta m_12 +1 $ if $Delta m_12$ is odd.
arXiv Detail & Related papers (2021-05-25T14:56:58Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Nuclear spin squeezing by continuous quantum non-demolition measurement:
a theoretical study [0.0]
We take advantage of the weak coupling of ground-state helium-3 nuclear spin to its environment to produce macroscopic quantum states.
We perform a quantum non-demolition measurement of a transverse component of the polarized collective nuclear spin.
We find a limit $propto(gamma_alpha/Gamma_rm sq)1/2$ on the conditional variance reached in a time.
arXiv Detail & Related papers (2020-12-29T09:56:30Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.