論文の概要: Heterogeneous Graph Sequence Neural Networks for Dynamic Traffic Assignment
- arxiv url: http://arxiv.org/abs/2408.04131v1
- Date: Wed, 7 Aug 2024 23:41:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 17:00:24.125885
- Title: Heterogeneous Graph Sequence Neural Networks for Dynamic Traffic Assignment
- Title(参考訳): 動的トラフィック割り当てのための不均一グラフシーケンスニューラルネットワーク
- Authors: Tong Liu, Hadi Meidani,
- Abstract要約: グラフニューラルネットワークを利用するような既存のトラフィック予測アプローチは、通常はセンサロケーションに限られる。
異種時空間グラフシーケンスネットワーク(HSTG)を提案する。
HSTGは、たとえ長距離であっても、オリジンノードと宛先ノード間の依存性を利用して、オリジン決定要求の下で暗黙の車両経路選択を学習する。
- 参考スコア(独自算出の注目度): 5.205252810216621
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic assignment and traffic flow prediction provide critical insights for urban planning, traffic management, and the development of intelligent transportation systems. An efficient model for calculating traffic flows over the entire transportation network could provide a more detailed and realistic understanding of traffic dynamics. However, existing traffic prediction approaches, such as those utilizing graph neural networks, are typically limited to locations where sensors are deployed and cannot predict traffic flows beyond sensor locations. To alleviate this limitation, inspired by fundamental relationship that exists between link flows and the origin-destination (OD) travel demands, we proposed the Heterogeneous Spatio-Temporal Graph Sequence Network (HSTGSN). HSTGSN exploits dependency between origin and destination nodes, even when it is long-range, and learns implicit vehicle route choices under different origin-destination demands. This model is based on a heterogeneous graph which consists of road links, OD links (virtual links connecting origins and destinations) and a spatio-temporal graph encoder-decoder that captures the spatio-temporal relationship between OD demands and flow distribution. We will show how the graph encoder-decoder is able to recover the incomplete information in the OD demand, by using node embedding from the graph decoder to predict the temporal changes in flow distribution. Using extensive experimental studies on real-world networks with complete/incomplete OD demands, we demonstrate that our method can not only capture the implicit spatio-temporal relationship between link traffic flows and OD demands but also achieve accurate prediction performance and generalization capability.
- Abstract(参考訳): 交通割当と交通流予測は、都市計画、交通管理、インテリジェント交通システムの発展に重要な洞察を与える。
交通ネットワーク全体にわたる交通の流れを計算する効率的なモデルが、交通力学をより詳細に、現実的に理解することを可能にするかもしれない。
しかしながら、グラフニューラルネットワークを利用するような既存のトラフィック予測アプローチは、通常はセンサーが配置された場所に限定され、センサロケーションを越えてトラフィックフローを予測できない。
この制限を緩和するために、リンクフローとオリジン・デスティネーション(OD)トラベル要求の間に存在する基本的関係に着想を得て、異種時空間グラフシーケンスネットワーク(HSTGSN)を提案した。
HSTGSNは、たとえ長距離であっても、オリジンノードと宛先ノード間の依存性を利用して、異なるオリジン・ディセプション要求の下で暗黙の車両経路選択を学習する。
このモデルは、道路リンク、ODリンク(原点と宛先を結ぶ仮想リンク)、およびOD要求とフロー分布の時空間関係をキャプチャする時空間グラフエンコーダ-デコーダからなる異種グラフに基づいている。
グラフエンコーダ-デコーダは,グラフデコーダからのノード埋め込みを用いて,フロー分布の時間的変化を予測することにより,OD需要における不完全情報を回復することができることを示す。
本研究では,完全/不完全なOD要求を伴う実世界のネットワークに関する広範な実験結果を用いて,リンクトラフィックフローとOD要求の間の暗黙の時空間的関係を捉えるだけでなく,正確な予測性能と一般化能力も達成できることを実証した。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Dynamic Hypergraph Structure Learning for Traffic Flow Forecasting [35.0288931087826]
交通流予測は、過去のネットワークと交通条件に基づいて将来の交通状況を予測することを目的としている。
この問題は、遠時ニューラルネットワーク(GNN)を用いた交通データにおける複雑な時間相関をモデル化することによって、典型的に解決される。
既存の手法は、近隣情報を線形に集約するメッセージパッシングのパラダイムに従っている。
本稿では,交通流予測のための動的ハイパー構造学習(DyHSL)モデルを提案する。
論文 参考訳(メタデータ) (2023-09-21T12:44:55Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
高速道路交通における交通流予測を改善するために,注意に基づく動的グラフ畳み込みリカレントニューラルネットワーク(ADG-N)を提案する。
グラフ畳み込み演算のオーバーフィッティングを低減するために、高い相対ノードを強調する専用ゲートカーネルが完全なグラフ上に導入された。
論文 参考訳(メタデータ) (2023-09-13T13:57:21Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Spatial-Temporal Interactive Dynamic Graph Convolution Network for
Traffic Forecasting [1.52292571922932]
本稿では,トラフィック予測のためのニューラルネットワークを用いた時空間動的グラフ畳み込みネットワーク(STIDGCN)を提案する。
そこで,STIDGCNでは,まず間隔でシーケンスを分割し,同時にトラフィックデータの時空間依存性を捉えるインタラクティブな動的グラフ畳み込み構造を提案する。
4つの実世界のトラフィックフローデータセットの実験は、STIDGCNが最先端のベースラインより優れていることを示した。
論文 参考訳(メタデータ) (2022-05-18T01:59:30Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
交通データは非常に非線形であり、道路ノード間の複雑な空間的相関を持つ。
既存のアプローチでは、固定された道路ネットワークトポロジマップと独立した時系列モジュールを使用して、時空間相関をキャプチャする。
本稿では,グラフ注意ネットワーク(GAT)を介して交通ネットワークの空間依存性を捕捉し,交通データの因果関係を解析する新しい予測モデルを提案する。
論文 参考訳(メタデータ) (2022-03-21T06:38:34Z) - Data-Driven Traffic Assignment: A Novel Approach for Learning Traffic
Flow Patterns Using a Graph Convolutional Neural Network [1.3706331473063877]
本稿では,交通ネットワークのトラフィックフローパターンを学習する新しいデータ駆動手法を提案する。
我々は、グラフ畳み込みニューラルネットワーク(GCNN)と呼ばれるニューラルネットワークベースのフレームワークを開発し、その問題を解決する。
モデルのトレーニングが完了すると、大規模ネットワークのトラフィックフローを即座に決定できる。
論文 参考訳(メタデータ) (2022-02-21T19:45:15Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting [47.19400232038575]
ノード固有のパターンの学習は、事前に定義されたグラフが避けられる間、トラフィック予測に不可欠である、と我々は主張する。
本稿では,新たな機能を備えたグラフ・コンパス・ネットワーク(GCN)の拡張のための2つの適応モジュールを提案する。
実世界の2つの交通データセットに対する実験により、AGCRNは空間接続に関する事前定義されたグラフを使わずに、かなりのマージンで最先端の性能を示した。
論文 参考訳(メタデータ) (2020-07-06T15:51:10Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。