M2EF-NNs: Multimodal Multi-instance Evidence Fusion Neural Networks for Cancer Survival Prediction
- URL: http://arxiv.org/abs/2408.04170v1
- Date: Thu, 8 Aug 2024 02:31:04 GMT
- Title: M2EF-NNs: Multimodal Multi-instance Evidence Fusion Neural Networks for Cancer Survival Prediction
- Authors: Hui Luo, Jiashuang Huang, Hengrong Ju, Tianyi Zhou, Weiping Ding,
- Abstract summary: We propose a neural network model called M2EF-NNs for accurate cancer survival prediction.
To capture global information in the images, we use a pre-trained Vision Transformer (ViT) model.
We are the first to apply the Dempster-Shafer evidence theory (DST) to cancer survival prediction.
- Score: 24.323961146023358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate cancer survival prediction is crucial for assisting clinical doctors in formulating treatment plans. Multimodal data, including histopathological images and genomic data, offer complementary and comprehensive information that can greatly enhance the accuracy of this task. However, the current methods, despite yielding promising results, suffer from two notable limitations: they do not effectively utilize global context and disregard modal uncertainty. In this study, we put forward a neural network model called M2EF-NNs, which leverages multimodal and multi-instance evidence fusion techniques for accurate cancer survival prediction. Specifically, to capture global information in the images, we use a pre-trained Vision Transformer (ViT) model to obtain patch feature embeddings of histopathological images. Then, we introduce a multimodal attention module that uses genomic embeddings as queries and learns the co-attention mapping between genomic and histopathological images to achieve an early interaction fusion of multimodal information and better capture their correlations. Subsequently, we are the first to apply the Dempster-Shafer evidence theory (DST) to cancer survival prediction. We parameterize the distribution of class probabilities using the processed multimodal features and introduce subjective logic to estimate the uncertainty associated with different modalities. By combining with the Dempster-Shafer theory, we can dynamically adjust the weights of class probabilities after multimodal fusion to achieve trusted survival prediction. Finally, Experimental validation on the TCGA datasets confirms the significant improvements achieved by our proposed method in cancer survival prediction and enhances the reliability of the model.
Related papers
- Confidence-aware multi-modality learning for eye disease screening [58.861421804458395]
We propose a novel multi-modality evidential fusion pipeline for eye disease screening.
It provides a measure of confidence for each modality and elegantly integrates the multi-modality information.
Experimental results on both public and internal datasets demonstrate that our model excels in robustness.
arXiv Detail & Related papers (2024-05-28T13:27:30Z) - SELECTOR: Heterogeneous graph network with convolutional masked autoencoder for multimodal robust prediction of cancer survival [8.403756148610269]
Multimodal prediction of cancer patient survival offers a more comprehensive and precise approach.
This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders.
Our method significantly outperforms state-of-the-art methods in both modality-missing and intra-modality information-confirmed cases.
arXiv Detail & Related papers (2024-03-14T11:23:39Z) - TTMFN: Two-stream Transformer-based Multimodal Fusion Network for
Survival Prediction [7.646155781863875]
We propose a novel framework named Two-stream Transformer-based Multimodal Fusion Network for survival prediction (TTMFN)
In TTMFN, we present a two-stream multimodal co-attention transformer module to take full advantage of the complex relationships between different modalities.
The experiment results on four datasets from The Cancer Genome Atlas demonstrate that TTMFN can achieve the best performance or competitive results.
arXiv Detail & Related papers (2023-11-13T02:31:20Z) - Cross-modality Attention-based Multimodal Fusion for Non-small Cell Lung
Cancer (NSCLC) Patient Survival Prediction [0.6476298550949928]
We propose a cross-modality attention-based multimodal fusion pipeline designed to integrate modality-specific knowledge for patient survival prediction in non-small cell lung cancer (NSCLC)
Compared with single modality, which achieved c-index of 0.5772 and 0.5885 using solely tissue image data or RNA-seq data, respectively, the proposed fusion approach achieved c-index 0.6587 in our experiment.
arXiv Detail & Related papers (2023-08-18T21:42:52Z) - Pathology-and-genomics Multimodal Transformer for Survival Outcome
Prediction [43.1748594898772]
We propose a multimodal transformer (PathOmics) integrating pathology and genomics insights into colon-related cancer survival prediction.
We emphasize the unsupervised pretraining to capture the intrinsic interaction between tissue microenvironments in gigapixel whole slide images.
We evaluate our approach on both TCGA colon and rectum cancer cohorts, showing that the proposed approach is competitive and outperforms state-of-the-art studies.
arXiv Detail & Related papers (2023-07-22T00:59:26Z) - Reliable Multimodality Eye Disease Screening via Mixture of Student's t
Distributions [49.4545260500952]
We introduce a novel multimodality evidential fusion pipeline for eye disease screening, EyeMoSt.
Our model estimates both local uncertainty for unimodality and global uncertainty for the fusion modality to produce reliable classification results.
Our experimental findings on both public and in-house datasets show that our model is more reliable than current methods.
arXiv Detail & Related papers (2023-03-17T06:18:16Z) - TMSS: An End-to-End Transformer-based Multimodal Network for
Segmentation and Survival Prediction [0.0]
oncologists do not do this in their analysis but rather fuse the information in their brain from multiple sources such as medical images and patient history.
This work proposes a deep learning method that mimics oncologists' analytical behavior when quantifying cancer and estimating patient survival.
arXiv Detail & Related papers (2022-09-12T06:22:05Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.