Confidence-aware multi-modality learning for eye disease screening
- URL: http://arxiv.org/abs/2405.18167v1
- Date: Tue, 28 May 2024 13:27:30 GMT
- Title: Confidence-aware multi-modality learning for eye disease screening
- Authors: Ke Zou, Tian Lin, Zongbo Han, Meng Wang, Xuedong Yuan, Haoyu Chen, Changqing Zhang, Xiaojing Shen, Huazhu Fu,
- Abstract summary: We propose a novel multi-modality evidential fusion pipeline for eye disease screening.
It provides a measure of confidence for each modality and elegantly integrates the multi-modality information.
Experimental results on both public and internal datasets demonstrate that our model excels in robustness.
- Score: 58.861421804458395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-modal ophthalmic image classification plays a key role in diagnosing eye diseases, as it integrates information from different sources to complement their respective performances. However, recent improvements have mainly focused on accuracy, often neglecting the importance of confidence and robustness in predictions for diverse modalities. In this study, we propose a novel multi-modality evidential fusion pipeline for eye disease screening. It provides a measure of confidence for each modality and elegantly integrates the multi-modality information using a multi-distribution fusion perspective. Specifically, our method first utilizes normal inverse gamma prior distributions over pre-trained models to learn both aleatoric and epistemic uncertainty for uni-modality. Then, the normal inverse gamma distribution is analyzed as the Student's t distribution. Furthermore, within a confidence-aware fusion framework, we propose a mixture of Student's t distributions to effectively integrate different modalities, imparting the model with heavy-tailed properties and enhancing its robustness and reliability. More importantly, the confidence-aware multi-modality ranking regularization term induces the model to more reasonably rank the noisy single-modal and fused-modal confidence, leading to improved reliability and accuracy. Experimental results on both public and internal datasets demonstrate that our model excels in robustness, particularly in challenging scenarios involving Gaussian noise and modality missing conditions. Moreover, our model exhibits strong generalization capabilities to out-of-distribution data, underscoring its potential as a promising solution for multimodal eye disease screening.
Related papers
- M2EF-NNs: Multimodal Multi-instance Evidence Fusion Neural Networks for Cancer Survival Prediction [24.323961146023358]
We propose a neural network model called M2EF-NNs for accurate cancer survival prediction.
To capture global information in the images, we use a pre-trained Vision Transformer (ViT) model.
We are the first to apply the Dempster-Shafer evidence theory (DST) to cancer survival prediction.
arXiv Detail & Related papers (2024-08-08T02:31:04Z) - Integrating Large Pre-trained Models into Multimodal Named Entity
Recognition with Evidential Fusion [31.234455370113075]
We propose incorporating uncertainty estimation into the MNER task, producing trustworthy predictions.
Our proposed algorithm models the distribution of each modality as a Normal-inverse Gamma distribution, and fuses them into a unified distribution.
Experiments on two datasets demonstrate that our proposed method outperforms the baselines and achieves new state-of-the-art performance.
arXiv Detail & Related papers (2023-06-29T14:50:23Z) - Calibrating Multimodal Learning [94.65232214643436]
We propose a novel regularization technique, i.e., Calibrating Multimodal Learning (CML) regularization, to calibrate the predictive confidence of previous methods.
This technique could be flexibly equipped by existing models and improve the performance in terms of confidence calibration, classification accuracy, and model robustness.
arXiv Detail & Related papers (2023-06-02T04:29:57Z) - Reliable Multimodality Eye Disease Screening via Mixture of Student's t
Distributions [49.4545260500952]
We introduce a novel multimodality evidential fusion pipeline for eye disease screening, EyeMoSt.
Our model estimates both local uncertainty for unimodality and global uncertainty for the fusion modality to produce reliable classification results.
Our experimental findings on both public and in-house datasets show that our model is more reliable than current methods.
arXiv Detail & Related papers (2023-03-17T06:18:16Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
We propose a novel multi-view classification algorithm, termed trusted multi-view classification (TMC)
TMC provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
Both theoretical and experimental results validate the effectiveness of the proposed model in accuracy, robustness and trustworthiness.
arXiv Detail & Related papers (2022-04-25T03:48:49Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Trusted Multi-View Classification [76.73585034192894]
We propose a novel multi-view classification method, termed trusted multi-view classification.
It provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
The proposed algorithm jointly utilizes multiple views to promote both classification reliability and robustness.
arXiv Detail & Related papers (2021-02-03T13:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.