wav2graph: A Framework for Supervised Learning Knowledge Graph from Speech
- URL: http://arxiv.org/abs/2408.04174v1
- Date: Thu, 8 Aug 2024 02:36:04 GMT
- Title: wav2graph: A Framework for Supervised Learning Knowledge Graph from Speech
- Authors: Khai Le-Duc, Quy-Anh Dang, Tan-Hanh Pham, Truong-Son Hy,
- Abstract summary: We introduce wav2graph, the first framework for supervised learning graph from speech data.
Our pipeline are straightforward: (1) constructing a KG based on transcribed spoken utterances and a named entity database, (2) converting KG into embedding vectors, and (3) training graph neural networks (GNNs) for node classification and link prediction tasks.
- Score: 1.387448620257867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge graphs (KGs) enhance the performance of large language models (LLMs) and search engines by providing structured, interconnected data that improves reasoning and context-awareness. However, KGs only focus on text data, thereby neglecting other modalities such as speech. In this work, we introduce wav2graph, the first framework for supervised learning knowledge graph from speech data. Our pipeline are straightforward: (1) constructing a KG based on transcribed spoken utterances and a named entity database, (2) converting KG into embedding vectors, and (3) training graph neural networks (GNNs) for node classification and link prediction tasks. Through extensive experiments conducted in inductive and transductive learning contexts using state-of-the-art GNN models, we provide baseline results and error analysis for node classification and link prediction tasks on human transcripts and automatic speech recognition (ASR) transcripts, including evaluations using both encoder-based and decoder-based node embeddings, as well as monolingual and multilingual acoustic pre-trained models. All related code, data, and models are published online.
Related papers
- Context Pooling: Query-specific Graph Pooling for Generic Inductive Link Prediction in Knowledge Graphs [55.918039693545616]
We introduce a novel method, named Context Pooling, to enhance GNN-based models' efficacy for link predictions in Knowledge Graphs.<n>Our method is generic and assessed by being applied to two state-of-the-art (SOTA) models on three public transductive and inductive datasets.
arXiv Detail & Related papers (2025-07-10T09:54:37Z) - Can Graph Neural Networks Learn Language with Extremely Weak Text Supervision? [62.12375949429938]
Building transferable Graph Neural Networks (GNNs) with CLIP pipeline is challenging because of three fundamental issues.
We leverage multi-modal prompt learning to effectively adapt pre-trained GNN to downstream tasks and data.
Our new paradigm embeds the graphs directly in the same space as the Large Language Models (LLMs) by learning both graph prompts and text prompts simultaneously.
arXiv Detail & Related papers (2024-12-11T08:03:35Z) - Pre-Training and Prompting for Few-Shot Node Classification on Text-Attributed Graphs [35.44563283531432]
Text-attributed graph (TAG) is one kind of important real-world graph-structured data with each node associated with raw texts.
For TAGs, traditional few-shot node classification methods directly conduct training on the pre-processed node features.
We propose P2TAG, a framework designed for few-shot node classification on TAGs with graph pre-training and prompting.
arXiv Detail & Related papers (2024-07-22T07:24:21Z) - Deep Bidirectional Language-Knowledge Graph Pretraining [159.9645181522436]
DRAGON is a self-supervised approach to pretraining a deeply joint language-knowledge foundation model from text and KG at scale.
Our model takes pairs of text segments and relevant KG subgraphs as input and bidirectionally fuses information from both modalities.
arXiv Detail & Related papers (2022-10-17T18:02:52Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGM is a framework to boost the performance of Graph Neural Networks (GNNs) based graph matching without training.
Applying TFGM on various GNNs shows promising improvements over baselines.
arXiv Detail & Related papers (2022-01-14T09:04:46Z) - Noise-robust Graph Learning by Estimating and Leveraging Pairwise
Interactions [123.07967420310796]
This paper bridges the gap by proposing a pairwise framework for noisy node classification on graphs.
PI-GNN relies on the PI as a primary learning proxy in addition to the pointwise learning from the noisy node class labels.
Our proposed framework PI-GNN contributes two novel components: (1) a confidence-aware PI estimation model that adaptively estimates the PI labels, and (2) a decoupled training approach that leverages the estimated PI labels.
arXiv Detail & Related papers (2021-06-14T14:23:08Z) - Few-shot Knowledge Graph-to-Text Generation with Pretrained Language
Models [42.38563175680914]
This paper studies how to automatically generate a natural language text that describes the facts in knowledge graph (KG)
Considering the few-shot setting, we leverage the excellent capacities of pretrained language models (PLMs) in language understanding and generation.
arXiv Detail & Related papers (2021-06-03T06:48:00Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.