Theoretical Advantage of Multiobjective Evolutionary Algorithms for Problems with Different Degrees of Conflict
- URL: http://arxiv.org/abs/2408.04207v1
- Date: Thu, 8 Aug 2024 04:09:52 GMT
- Title: Theoretical Advantage of Multiobjective Evolutionary Algorithms for Problems with Different Degrees of Conflict
- Authors: Weijie Zheng,
- Abstract summary: OneMaxMin$_k$ benchmark class is a generalized variant of COCZ and OneMinMax.
Two typical non-MOEA approaches, scalarization (weighted-sum approach) and $epsilon$-constraint approach, are considered.
We prove that (G)SEMO, MOEA/D, NSGA-II, and SMS-EMOA can cover the full Pareto front in $O(maxk,1nln n)$ expected number of function evaluations.
- Score: 4.8951183832371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of multiobjective evolutionary algorithms (MOEAs) often emphasizes its popularity for optimization problems with conflicting objectives. However, it is still theoretically unknown how MOEAs perform for different degrees of conflict, even for no conflicts, compared with typical approaches outside this field. As the first step to tackle this question, we propose the OneMaxMin$_k$ benchmark class with the degree of the conflict $k\in[0..n]$, a generalized variant of COCZ and OneMinMax. Two typical non-MOEA approaches, scalarization (weighted-sum approach) and $\epsilon$-constraint approach, are considered. We prove that for any set of weights, the set of optima found by scalarization approach cannot cover the full Pareto front. Although the set of the optima of constrained problems constructed via $\epsilon$-constraint approach can cover the full Pareto front, the general used ways (via exterior or nonparameter penalty functions) to solve such constrained problems encountered difficulties. The nonparameter penalty function way cannot construct the set of optima whose function values are the Pareto front, and the exterior way helps (with expected runtime of $O(n\ln n)$ for the randomized local search algorithm for reaching any Pareto front point) but with careful settings of $\epsilon$ and $r$ ($r>1/(\epsilon+1-\lceil \epsilon \rceil)$). In constrast, the generally analyzed MOEAs can efficiently solve OneMaxMin$_k$ without above careful designs. We prove that (G)SEMO, MOEA/D, NSGA-II, and SMS-EMOA can cover the full Pareto front in $O(\max\{k,1\}n\ln n)$ expected number of function evaluations, which is the same asymptotic runtime as the exterior way in $\epsilon$-constraint approach with careful settings. As a side result, our results also give the performance analysis of solving a constrained problem via multiobjective way.
Related papers
- MGDA Converges under Generalized Smoothness, Provably [27.87166415148172]
Multi-objective optimization (MOO) is receiving more attention in various fields such as multi-task learning.
Recent works provide some effective algorithms with theoretical analysis but they are limited by the standard $L$-smooth or bounded-gradient assumptions.
We study a more general and realistic class of generalized $ell$-smooth loss functions, where $ell$ is a general non-decreasing function of gradient norm.
arXiv Detail & Related papers (2024-05-29T18:36:59Z) - The First Proven Performance Guarantees for the Non-Dominated Sorting
Genetic Algorithm II (NSGA-II) on a Combinatorial Optimization Problem [6.793248433673384]
The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is one of the most prominent algorithms to solve multi-objective optimization problems.
We give the first proven performance guarantees for a classic optimization problem, the NP-complete bi-objective minimum spanning tree problem.
arXiv Detail & Related papers (2023-05-22T19:59:19Z) - Stochastic Nonsmooth Convex Optimization with Heavy-Tailed Noises:
High-Probability Bound, In-Expectation Rate and Initial Distance Adaptation [22.758674468435302]
In a heavy-tailed noise regime, the difference between the gradient and the true rate is assumed to have a finite $p-th moment.
This paper provides a comprehensive analysis of nonsmooth convex optimization with heavy-tailed noises.
arXiv Detail & Related papers (2023-03-22T03:05:28Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
We convert high-dimensional $ell_infty$-approachability problems to low-dimensional pseudonorm approachability problems.
We develop an algorithmic theory of pseudonorm approachability, analogous to previous work on approachability for $ell$ and other norms.
arXiv Detail & Related papers (2023-02-03T03:19:14Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - Theoretical Analyses of Multiobjective Evolutionary Algorithms on
Multimodal Objectives [15.56430085052365]
OJZJ problem is a bi-objective problem composed of two objectives isomorphic to the classic jump function benchmark.
We prove that SEMO with probability one does not compute the full Pareto front, regardless of the runtime.
We also show the tighter bound $frac 32 e nk+1 pm o(nk+1)$, which might be the first runtime bound for an MOEA that is tight apart from lower-order terms.
arXiv Detail & Related papers (2020-12-14T03:07:39Z) - Conservative Stochastic Optimization with Expectation Constraints [11.393603788068777]
This paper considers convex optimization problems where the objective and constraint functions involve expectations with respect to the data indices or environmental variables.
Online and efficient approaches for solving such problems have not been widely studied.
We propose a novel conservative optimization algorithm (CSOA) that achieves zero constraint violation and $Oleft(T-frac12right)$ optimality gap.
arXiv Detail & Related papers (2020-08-13T08:56:24Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.