Strong-to-weak symmetry breaking states in stochastic dephasing stabilizer circuits
- URL: http://arxiv.org/abs/2408.04241v1
- Date: Thu, 8 Aug 2024 06:03:23 GMT
- Title: Strong-to-weak symmetry breaking states in stochastic dephasing stabilizer circuits
- Authors: Yoshihito Kuno, Takahiro Orito, Ikuo Ichinose,
- Abstract summary: Under symmetry-respective decoherence, spontaneous strong-to-weak symmetry breaking can occur.
This work provides a scheme to describe S SSB and other decoherence phenomena in the mixed state by employing the stabilizer formalism and the efficient numerical algorithm of Clifford circuits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering mixed state quantum orders is an on-going issue. Recently, it has been recognized that there are (at least) two kinds of symmetries in the mixed state; strong and weak symmetries. Under symmetry-respective decoherence, spontaneous strong-to-weak symmetry breaking (SSSB) can occur. This work provides a scheme to describe SSSB and other decoherence phenomena in the mixed state by employing the stabilizer formalism and the efficient numerical algorithm of Clifford circuits. We present two systematic numerical studies. In a two-dimensional (2D) circuit with a stochastic Ising type decoherence, an SSSB phase transition is clearly observed and its criticality is elucidated by the numerical methods. In particular, we calculate R\'{e}nyi-2 correlations and estimate critical exponents of the SSSB transition. For the second system, we introduce an idea of subsystem SSSB. As an example, we study a system with symmetry-protected-topological (SPT) order provided by both one-form and zero-form symmetries, and observe how the system evolves under decoherence. After displaying numerical results, we show that viewpoint of percolation is quite useful to understand the SSSB transition, which is applicable for a wide range of decohered states. Finally, we comment on SSSB of one-form-symmetry exemplifying toric code.
Related papers
- Controlling Symmetries and Quantum Criticality in the Anisotropic Coupled-Top Model [32.553027955412986]
We investigate the anisotropic coupled-top model, which describes the interactions between two large spins along both $x-$ and $y-$directions.
We can manipulate the system's symmetry, inducing either discrete $Z$ or continuous U(1) symmetry.
The framework provides an ideal platform for experimentally controlling symmetries and investigating associated physical phenomena.
arXiv Detail & Related papers (2025-02-13T15:14:29Z) - Boundary anomaly detection in two-dimensional subsystem symmetry-protected topological phases [20.518529676631122]
We develop a method to detect quantum anomalies in systems with subsystem symmetry.
Using numerical simulations, we demonstrate the power of this method by identifying strong and weak $Ztautimes Zsigma$ SSPT phases.
We extend the anomaly indicator to mixed-state density matrices and show that quantum anomalies of subsystem symmetry can persist under both uniform and alternating disorders.
arXiv Detail & Related papers (2024-12-10T14:53:54Z) - Strong-to-weak Symmetry Breaking and Entanglement Transitions [6.095133268764501]
We study the entanglement transition from the perspective of strong-to-weak symmetry breaking.
Our results provide a novel viewpoint on the entanglement transition under symmetry constraints.
arXiv Detail & Related papers (2024-11-08T06:42:28Z) - Intrinsic mixed state topological order in a stabilizer system under stochastic decoherence: Strong-to-weak spontaneous symmetry breaking from percolation point of view [0.0]
An intrinsic mixed state topologically-ordered (IMTO) state was proposed.
We observe the emergence of IMTO by studying the toric code system under maximal decoherence.
The present study clarifies the existence of two distinct microscopic string operators for the fermionic anyons, that leads to distinct fermionic strong and weak 1-form symmetries.
arXiv Detail & Related papers (2024-10-18T08:13:24Z) - Spontaneous symmetry breaking in open quantum systems: strong, weak, and strong-to-weak [4.41737598556146]
We show that strong symmetry always spontaneously breaks into the corresponding weak symmetry.
We conjecture that this relation among strong-to-weak symmetry breaking, gapless modes, and symmetry-charge diffusion is general for continuous symmetries.
arXiv Detail & Related papers (2024-06-27T17:55:36Z) - Strong-to-Weak Spontaneous Symmetry Breaking in Mixed Quantum States [10.383582684153945]
This paper explores a novel type of spontaneous symmetry breaking ( SSB) where a strong symmetry is broken to a weak one.
We prove that SW- SSB is a universal property of mixed-state quantum phases.
We argue that a thermal state at a nonzero temperature in the canonical ensemble (with fixed symmetry charge) should have spontaneously broken strong symmetry.
arXiv Detail & Related papers (2024-05-06T16:59:01Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Symmetry Protected Topological Phases of Mixed States in the Doubled Space [0.0]
We study the interplay of symmetry and topology in quantum many-body mixed states.
In a phenomenon not seen in pure states, mixed states can exhibit average symmetries.
We study the patterns of spontaneous symmetry breaking ( SSB) of mixed states.
arXiv Detail & Related papers (2024-03-20T03:40:28Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.