Boundary anomaly detection in two-dimensional subsystem symmetry-protected topological phases
- URL: http://arxiv.org/abs/2412.07563v1
- Date: Tue, 10 Dec 2024 14:53:54 GMT
- Title: Boundary anomaly detection in two-dimensional subsystem symmetry-protected topological phases
- Authors: Ke Ding, Hao-Ran Zhang, Bai-Ting Liu, Shuo Yang,
- Abstract summary: We develop a method to detect quantum anomalies in systems with subsystem symmetry.
Using numerical simulations, we demonstrate the power of this method by identifying strong and weak $Ztautimes Zsigma$ SSPT phases.
We extend the anomaly indicator to mixed-state density matrices and show that quantum anomalies of subsystem symmetry can persist under both uniform and alternating disorders.
- Score: 20.518529676631122
- License:
- Abstract: We develop a method to detect quantum anomalies in systems with subsystem symmetry, building on the concept of anomaly indicators. This approach allows us to distinguish different subsystem symmetry-protected topological (SSPT) phases and uncover new ones. Using numerical simulations, we demonstrate the power of this method by identifying strong and weak $Z_2^\tau\times Z_2^\sigma$ SSPT phases in a tunable tensor network state. Our analysis reveals an intrinsic $Z_2$ SSPT phase characterized by its degenerate entanglement spectrum. Furthermore, we extend the anomaly indicator to mixed-state density matrices and show that quantum anomalies of subsystem symmetry can persist under both uniform and alternating disorders. This finding establishes a connection between boundary quantum anomalies in pure and mixed states. Our work provides a comprehensive framework for detecting and constructing topological quantum phases protected by subsystem symmetries, offering new insights into these exotic quantum phases.
Related papers
- Strong-to-weak spontaneous symmetry breaking meets average symmetry-protected topological order [17.38734393793605]
We propose a new class of phases, termed the double ASPT phase, which emerges from a nontrivial extension of these two orders.
This new phase is absent from prior studies and cannot exist in conventional closed systems.
arXiv Detail & Related papers (2024-10-17T16:36:53Z) - Holographic View of Mixed-State Symmetry-Protected Topological Phases in Open Quantum Systems [4.416740212467273]
We establish a holographic duality between d-dimensional mixed-state symmetry-protected topological phases (mSPTs) and (d+1)-dimensional subsystem symmetry-protected topological states (SSPTs)
Specifically, we show that the reduced density matrix of the boundary layer of a (d+1)-dimensional SSPT with subsystem symmetry S and global symmetry G corresponds to a d-dimensional mSPT with strong S and weak G symmetries.
We discuss several implications of this holographic duality, including a method for preparing intrinsic mSPT states through the duality.
arXiv Detail & Related papers (2024-10-10T17:59:42Z) - Intrinsic mixed-state SPT from modulated symmetries and hierarchical structure of anomaly [0.0]
We introduce a class of intrinsic symmetry-protected topological mixed-state in open quantum systems.
The mSPT phases cannot be realized as the ground states of a gapped Hamiltonian under thermal equilibrium.
A detailed comparison of the hierarchical structure of boundary anomalies in both pure and mixed states is presented.
arXiv Detail & Related papers (2024-07-11T18:01:37Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Topological Phases with Average Symmetries: the Decohered, the Disordered, and the Intrinsic [11.002608494115886]
Topological phases in mixed quantum states, originating from textitdecoherence in open quantum systems, have recently garnered significant interest.
We present a systematic classification and characterization of average symmetry-protected topological phases.
We also formulate the theory of average symmetry-enriched topological (ASET) orders in disordered bosonic systems.
arXiv Detail & Related papers (2023-05-25T18:04:22Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.