KnowPC: Knowledge-Driven Programmatic Reinforcement Learning for Zero-shot Coordination
- URL: http://arxiv.org/abs/2408.04336v1
- Date: Thu, 8 Aug 2024 09:43:54 GMT
- Title: KnowPC: Knowledge-Driven Programmatic Reinforcement Learning for Zero-shot Coordination
- Authors: Yin Gu, Qi Liu, Zhi Li, Kai Zhang,
- Abstract summary: Zero-shot coordination (ZSC) remains a major challenge in the cooperative AI field.
We introduce Knowledge-driven Programmatic reinforcement learning for ZSC.
A significant challenge is the vast program search space, making it difficult to find high-performing programs efficiently.
- Score: 11.203441390685201
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Zero-shot coordination (ZSC) remains a major challenge in the cooperative AI field, which aims to learn an agent to cooperate with an unseen partner in training environments or even novel environments. In recent years, a popular ZSC solution paradigm has been deep reinforcement learning (DRL) combined with advanced self-play or population-based methods to enhance the neural policy's ability to handle unseen partners. Despite some success, these approaches usually rely on black-box neural networks as the policy function. However, neural networks typically lack interpretability and logic, making the learned policies difficult for partners (e.g., humans) to understand and limiting their generalization ability. These shortcomings hinder the application of reinforcement learning methods in diverse cooperative scenarios.We suggest to represent the agent's policy with an interpretable program. Unlike neural networks, programs contain stable logic, but they are non-differentiable and difficult to optimize.To automatically learn such programs, we introduce Knowledge-driven Programmatic reinforcement learning for zero-shot Coordination (KnowPC). We first define a foundational Domain-Specific Language (DSL), including program structures, conditional primitives, and action primitives. A significant challenge is the vast program search space, making it difficult to find high-performing programs efficiently. To address this, KnowPC integrates an extractor and an reasoner. The extractor discovers environmental transition knowledge from multi-agent interaction trajectories, while the reasoner deduces the preconditions of each action primitive based on the transition knowledge.
Related papers
- Selective Exploration and Information Gathering in Search and Rescue Using Hierarchical Learning Guided by Natural Language Input [5.522800137785975]
We introduce a system that integrates social interaction via large language models (LLMs) with a hierarchical reinforcement learning (HRL) framework.
The proposed system is designed to translate verbal inputs from human stakeholders into actionable RL insights and adjust its search strategy.
By leveraging human-provided information through LLMs and structuring task execution through HRL, our approach significantly improves the agent's learning efficiency and decision-making process in environments characterised by long horizons and sparse rewards.
arXiv Detail & Related papers (2024-09-20T12:27:47Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Reasoning Algorithmically in Graph Neural Networks [1.8130068086063336]
We aim to integrate the structured and rule-based reasoning of algorithms with adaptive learning capabilities of neural networks.
This dissertation provides theoretical and practical contributions to this area of research.
arXiv Detail & Related papers (2024-02-21T12:16:51Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Hierarchical Deep Counterfactual Regret Minimization [53.86223883060367]
In this paper, we introduce the first hierarchical version of Deep CFR, an innovative method that boosts learning efficiency in tasks involving extensively large state spaces and deep game trees.
A notable advantage of HDCFR over previous works is its ability to facilitate learning with predefined (human) expertise and foster the acquisition of skills that can be transferred to similar tasks.
arXiv Detail & Related papers (2023-05-27T02:05:41Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
We apply the concept of trapping regions, known from qualitative theory of dynamical systems, to create safety sets in the joint strategy space for decentralized learning.
We propose a binary partitioning algorithm for verification that candidate sets form trapping regions in systems with known learning dynamics, and a sampling algorithm for scenarios where learning dynamics are not known.
arXiv Detail & Related papers (2023-02-27T14:47:52Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
We take a task-agnostic view of continual learning and develop a hierarchical information-theoretic optimality principle.
We propose a neural network layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating a set of information processing paths.
Our approach can operate in a task-agnostic way, i.e., it does not require task-specific knowledge, as is the case with many existing continual learning algorithms.
arXiv Detail & Related papers (2022-11-14T19:53:15Z) - Learning to Synthesize Programs as Interpretable and Generalizable
Policies [25.258598215642067]
We present a framework that learns to synthesize a program, which details the procedure to solve a task in a flexible and expressive manner.
Experimental results demonstrate that the proposed framework not only learns to reliably synthesize task-solving programs but also outperforms DRL and program synthesis baselines.
arXiv Detail & Related papers (2021-08-31T07:03:06Z) - Learning Compositional Neural Programs for Continuous Control [62.80551956557359]
We propose a novel solution to challenging sparse-reward, continuous control problems.
Our solution, dubbed AlphaNPI-X, involves three separate stages of learning.
We empirically show that AlphaNPI-X can effectively learn to tackle challenging sparse manipulation tasks.
arXiv Detail & Related papers (2020-07-27T08:27:14Z) - Meta-Gradient Reinforcement Learning with an Objective Discovered Online [54.15180335046361]
We propose an algorithm based on meta-gradient descent that discovers its own objective, flexibly parameterised by a deep neural network.
Because the objective is discovered online, it can adapt to changes over time.
On the Atari Learning Environment, the meta-gradient algorithm adapts over time to learn with greater efficiency.
arXiv Detail & Related papers (2020-07-16T16:17:09Z) - KoGuN: Accelerating Deep Reinforcement Learning via Integrating Human
Suboptimal Knowledge [40.343858932413376]
We propose knowledge guided policy network (KoGuN), a novel framework that combines human prior suboptimal knowledge with reinforcement learning.
Our framework consists of a fuzzy rule controller to represent human knowledge and a refine module to fine-tune suboptimal prior knowledge.
arXiv Detail & Related papers (2020-02-18T07:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.