Selective Exploration and Information Gathering in Search and Rescue Using Hierarchical Learning Guided by Natural Language Input
- URL: http://arxiv.org/abs/2409.13445v1
- Date: Fri, 20 Sep 2024 12:27:47 GMT
- Title: Selective Exploration and Information Gathering in Search and Rescue Using Hierarchical Learning Guided by Natural Language Input
- Authors: Dimitrios Panagopoulos, Adolfo Perrusquia, Weisi Guo,
- Abstract summary: We introduce a system that integrates social interaction via large language models (LLMs) with a hierarchical reinforcement learning (HRL) framework.
The proposed system is designed to translate verbal inputs from human stakeholders into actionable RL insights and adjust its search strategy.
By leveraging human-provided information through LLMs and structuring task execution through HRL, our approach significantly improves the agent's learning efficiency and decision-making process in environments characterised by long horizons and sparse rewards.
- Score: 5.522800137785975
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, robots and autonomous systems have become increasingly integral to our daily lives, offering solutions to complex problems across various domains. Their application in search and rescue (SAR) operations, however, presents unique challenges. Comprehensively exploring the disaster-stricken area is often infeasible due to the vastness of the terrain, transformed environment, and the time constraints involved. Traditional robotic systems typically operate on predefined search patterns and lack the ability to incorporate and exploit ground truths provided by human stakeholders, which can be the key to speeding up the learning process and enhancing triage. Addressing this gap, we introduce a system that integrates social interaction via large language models (LLMs) with a hierarchical reinforcement learning (HRL) framework. The proposed system is designed to translate verbal inputs from human stakeholders into actionable RL insights and adjust its search strategy. By leveraging human-provided information through LLMs and structuring task execution through HRL, our approach not only bridges the gap between autonomous capabilities and human intelligence but also significantly improves the agent's learning efficiency and decision-making process in environments characterised by long horizons and sparse rewards.
Related papers
- Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
This paper is devoted to a comprehensive review of realizing the sample efficiency and generalization of RL algorithms through transfer and inverse reinforcement learning (T-IRL)
Our findings denote that a majority of recent research works have dealt with the aforementioned challenges by utilizing human-in-the-loop and sim-to-real strategies.
Under the IRL structure, training schemes that require a low number of experience transitions and extension of such frameworks to multi-agent and multi-intention problems have been the priority of researchers in recent years.
arXiv Detail & Related papers (2024-11-15T15:18:57Z) - LGR2: Language Guided Reward Relabeling for Accelerating Hierarchical Reinforcement Learning [22.99690700210957]
We propose a novel HRL framework that leverages language instructions to generate a stationary reward function for a higher-level policy.
Since the language-guided reward is unaffected by the lower primitive behaviour, LGR2 mitigates non-stationarity.
Our approach attains success rates exceeding 70$%$ in challenging, sparse-reward robotic navigation and manipulation environments.
arXiv Detail & Related papers (2024-06-09T18:40:24Z) - RHFedMTL: Resource-Aware Hierarchical Federated Multi-Task Learning [11.329273673732217]
Federated learning is an effective way to enable AI over massive distributed nodes with security.
It is challenging to ensure the privacy while maintain a coupled multi-task learning across multiple base stations (BSs) and terminals.
In this paper, inspired by the natural cloud-BS-terminal hierarchy of cellular works, we provide a viable resource-aware hierarchical federated MTL (RHFedMTL) solution.
arXiv Detail & Related papers (2023-06-01T13:49:55Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
Reinforcement learning (RL) algorithms hold the promise of enabling autonomous skill acquisition for robotic systems.
In practice, real-world robotic RL typically requires time consuming data collection and frequent human intervention to reset the environment.
In this work, we study how these challenges can be tackled by effective utilization of diverse offline datasets collected from previously seen tasks.
arXiv Detail & Related papers (2022-07-11T08:31:22Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
Intrinsic motivations have proven to generate a task-agnostic signal to properly allocate the training time amongst goals.
While the majority of works in the field of intrinsically motivated open-ended learning focus on scenarios where goals are independent from each other, only few of them studied the autonomous acquisition of interdependent tasks.
In particular, we first deepen the analysis of a previous system, showing the importance of incorporating information about the relationships between tasks at a higher level of the architecture.
Then we introduce H-GRAIL, a new system that extends the previous one by adding a new learning layer to store the autonomously acquired sequences
arXiv Detail & Related papers (2022-05-16T10:43:01Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
Real-world embodied learning, such as that performed by humans and animals, is situated in a continual, non-episodic world.
Common benchmark tasks in RL are episodic, with the environment resetting between trials to provide the agent with multiple attempts.
This discrepancy presents a major challenge when attempting to take RL algorithms developed for episodic simulated environments and run them on real-world platforms.
arXiv Detail & Related papers (2021-12-17T16:28:06Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - Deep Reinforcement Learning with Interactive Feedback in a Human-Robot
Environment [1.2998475032187096]
We propose a deep reinforcement learning approach with interactive feedback to learn a domestic task in a human-robot scenario.
We compare three different learning methods using a simulated robotic arm for the task of organizing different objects.
The obtained results show that a learner agent, using either agent-IDeepRL or human-IDeepRL, completes the given task earlier and has fewer mistakes compared to the autonomous DeepRL approach.
arXiv Detail & Related papers (2020-07-07T11:55:27Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z) - Human AI interaction loop training: New approach for interactive
reinforcement learning [0.0]
Reinforcement Learning (RL) in various decision-making tasks of machine learning provides effective results with an agent learning from a stand-alone reward function.
RL presents unique challenges with large amounts of environment states and action spaces, as well as in the determination of rewards.
Imitation Learning (IL) offers a promising solution for those challenges using a teacher.
arXiv Detail & Related papers (2020-03-09T15:27:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.