Anomaly Prediction: A Novel Approach with Explicit Delay and Horizon
- URL: http://arxiv.org/abs/2408.04377v3
- Date: Wed, 23 Oct 2024 14:29:56 GMT
- Title: Anomaly Prediction: A Novel Approach with Explicit Delay and Horizon
- Authors: Jiang You, Arben Cela, René Natowicz, Jacob Ouanounou, Patrick Siarry,
- Abstract summary: This paper introduces a novel approach for time series anomaly prediction, incorporating temporal information directly into the prediction results.
Our results demonstrate the efficacy of our approach in providing timely and accurate anomaly predictions, setting a new benchmark for future research in this field.
- Score: 1.8816077341295625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection in time series data is a critical challenge across various domains. Traditional methods typically focus on identifying anomalies in immediate subsequent steps, often underestimating the significance of temporal dynamics such as delay time and horizons of anomalies, which generally require extensive post-analysis. This paper introduces a novel approach for time series anomaly prediction, incorporating temporal information directly into the prediction results. We propose a new dataset specifically designed to evaluate this approach and conduct comprehensive experiments using several state-of-the-art methods. Our results demonstrate the efficacy of our approach in providing timely and accurate anomaly predictions, setting a new benchmark for future research in this field.
Related papers
- Deconfounding Time Series Forecasting [1.5967186772129907]
Time series forecasting is a critical task in various domains, where accurate predictions can drive informed decision-making.
Traditional forecasting methods often rely on current observations of variables to predict future outcomes.
We propose an enhanced forecasting approach that incorporates representations of latent confounders derived from historical data.
arXiv Detail & Related papers (2024-10-27T12:45:42Z) - Unsupervised Time Series Anomaly Prediction with Importance-based Generative Contrastive Learning [13.082961588929606]
Time series anomaly prediction plays an essential role in many real-world scenarios, such as environmental prevention and prompt maintenance of cyber-physical systems.
Existing time series anomaly prediction methods mainly require supervised training with plenty of manually labeled data.
In this paper, we study a novel problem of unsupervised time series anomaly prediction.
arXiv Detail & Related papers (2024-10-22T10:46:36Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
We present a Constrained Learning approach for long-term time series forecasting that respects a user-defined upper bound on the loss at each time-step.
We propose a practical Primal-Dual algorithm to tackle it, and aims to demonstrate that it exhibits competitive average performance in time series benchmarks, while shaping the errors across the predicted window.
arXiv Detail & Related papers (2024-02-14T18:20:44Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Precursor-of-Anomaly Detection for Irregular Time Series [31.73234935455713]
We present a novel type of anomaly detection, called Precursor-of-Anomaly (PoA) detection.
To solve both problems at the same time, we present a neural controlled differential equation-based neural network and its multi-task learning algorithm.
arXiv Detail & Related papers (2023-06-27T14:10:09Z) - Spatio-temporal predictive tasks for abnormal event detection in videos [60.02503434201552]
We propose new constrained pretext tasks to learn object level normality patterns.
Our approach consists in learning a mapping between down-scaled visual queries and their corresponding normal appearance and motion characteristics.
Experiments on several benchmark datasets demonstrate the effectiveness of our approach to localize and track anomalies.
arXiv Detail & Related papers (2022-10-27T19:45:12Z) - A Comparative Study on Unsupervised Anomaly Detection for Time Series:
Experiments and Analysis [28.79393419730138]
Time series anomaly detection is often essential to enable reliability and safety.
Many recent studies target anomaly detection for time series data.
We introduce for data, methods, and evaluation strategies.
We systematically evaluate and compare state-of-the-art traditional as well as deep learning techniques.
arXiv Detail & Related papers (2022-09-10T10:44:25Z) - Neural Contextual Anomaly Detection for Time Series [7.523820334642732]
We introduce Neural Contextual Anomaly Detection (NCAD), a framework for anomaly detection on time series.
NCAD scales seamlessly from the unsupervised to supervised setting.
We demonstrate empirically on standard benchmark datasets that our approach obtains a state-of-the-art performance.
arXiv Detail & Related papers (2021-07-16T04:33:53Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.