論文の概要: Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations
- arxiv url: http://arxiv.org/abs/2408.04380v3
- Date: Wed, 21 Aug 2024 15:54:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 12:00:34.829427
- Title: Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations
- Title(参考訳): ロボットの深部生成モデル:マルチモーダルなデモから学ぶ
- Authors: Julen Urain, Ajay Mandlekar, Yilun Du, Mahi Shafiullah, Danfei Xu, Katerina Fragkiadaki, Georgia Chalvatzaki, Jan Peters,
- Abstract要約: 近年、ロボット学習コミュニティは、大規模なデータセットの複雑さを捉えるために、深層生成モデルを使うことへの関心が高まっている。
本稿では,エネルギーベースモデル,拡散モデル,アクションバリューマップ,生成的敵ネットワークなど,コミュニティが探求してきたさまざまなモデルについて述べる。
また,情報生成から軌道生成,コスト学習に至るまで,深層生成モデルを用いた様々なアプリケーションについて述べる。
- 参考スコア(独自算出の注目度): 52.11801730860999
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning from Demonstrations, the field that proposes to learn robot behavior models from data, is gaining popularity with the emergence of deep generative models. Although the problem has been studied for years under names such as Imitation Learning, Behavioral Cloning, or Inverse Reinforcement Learning, classical methods have relied on models that don't capture complex data distributions well or don't scale well to large numbers of demonstrations. In recent years, the robot learning community has shown increasing interest in using deep generative models to capture the complexity of large datasets. In this survey, we aim to provide a unified and comprehensive review of the last year's progress in the use of deep generative models in robotics. We present the different types of models that the community has explored, such as energy-based models, diffusion models, action value maps, or generative adversarial networks. We also present the different types of applications in which deep generative models have been used, from grasp generation to trajectory generation or cost learning. One of the most important elements of generative models is the generalization out of distributions. In our survey, we review the different decisions the community has made to improve the generalization of the learned models. Finally, we highlight the research challenges and propose a number of future directions for learning deep generative models in robotics.
- Abstract(参考訳): データからロボットの行動モデルを学ぶための分野であるDemonstrationsからの学習は、深層生成モデルの出現によって人気が高まっている。
この問題は、Imitation Learning, Behavioral Cloning, Inverse Reinforcement Learningといった名前で何年も研究されてきたが、古典的な手法は複雑なデータ分布をうまく捉えていない、あるいは多くのデモにうまくスケールしていないモデルに依存している。
近年、ロボット学習コミュニティは、大規模なデータセットの複雑さを捉えるために、深層生成モデルを使うことへの関心が高まっている。
本調査では,ロボット工学における深部生成モデルの利用における昨年の進歩を総合的かつ包括的に検証することを目的としている。
我々は、エネルギーベースモデル、拡散モデル、アクションバリューマップ、生成的敵ネットワークなど、コミュニティが探求した様々なタイプのモデルを提示する。
また,情報生成から軌道生成,コスト学習に至るまで,深層生成モデルを用いた様々なアプリケーションについて述べる。
生成モデルの最も重要な要素の1つは分布の一般化である。
本調査では,学習モデルの一般化を改善するために,コミュニティが行ったさまざまな決定についてレビューする。
最後に,研究課題を取り上げ,ロボット工学における深層生成モデル学習の今後の方向性について述べる。
関連論文リスト
- Recommendation with Generative Models [35.029116616023586]
生成モデルは、統計分布から学習し、サンプリングすることで、データの新しいインスタンスを作成することができるAIモデルである。
これらのモデルは、画像生成、テキスト合成、音楽合成など、様々な領域に応用されている。
レコメンデーションシステムでは、Gen-RecSysと呼ばれる生成モデルは、レコメンデーションの正確性と多様性を改善する。
論文 参考訳(メタデータ) (2024-09-18T18:29:15Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
モデルマージは、機械学習コミュニティにおける効率的なエンパワーメント技術である。
これらの手法の体系的かつ徹底的なレビューに関する文献には大きなギャップがある。
論文 参考訳(メタデータ) (2024-08-14T16:58:48Z) - Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
本研究では、独自の学習データセットに加えて、生成したコンテンツをフィードバックする生成モデルの学習ダイナミクスについて検討する。
各イテレーションで十分な量の外部データが導入されない限り、非自明な温度がモデルを退化させることを示す。
論文 参考訳(メタデータ) (2024-04-02T21:51:39Z) - Comprehensive Exploration of Synthetic Data Generation: A Survey [4.485401662312072]
この研究は、過去10年間で417のSynthetic Data Generationモデルを調査します。
その結果、ニューラルネットワークベースのアプローチが普及し、モデルのパフォーマンスと複雑性が向上したことが明らかになった。
コンピュータビジョンが支配的であり、GANが主要な生成モデルであり、拡散モデル、トランスフォーマー、RNNが競合する。
論文 参考訳(メタデータ) (2024-01-04T20:23:51Z) - Fine-Tuning Generative Models as an Inference Method for Robotic Tasks [18.745665662647912]
ロボット作業における観察にニューラルネットワークモデルのサンプル生成を迅速に適応させる方法について検討する。
鍵となるアイデアは、観測された証拠と一致する生成サンプルにそれを適合させることで、モデルを素早く微調整することである。
本手法は自己回帰モデルと変分自己エンコーダの両方に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-10-19T16:11:49Z) - Reinforcement Learning for Generative AI: A Survey [40.21640713844257]
この調査は、さまざまなアプリケーション領域にまたがるハイレベルなレビューに光を当てることを目的としています。
この領域では厳格な分類法を提供し、様々なモデルや応用について十分なカバレッジを提供している。
この調査は、現在のモデルの限界に対処し、生成AIのフロンティアを拡大する可能性のある潜在的方向を示すことで締めくくられる。
論文 参考訳(メタデータ) (2023-08-28T06:15:14Z) - Learning to Jump: Thinning and Thickening Latent Counts for Generative
Modeling [69.60713300418467]
ジャンプの学習は、様々な種類のデータの生成モデリングのための一般的なレシピである。
ジャンプの学習が、デノゼの学習と相容れないパフォーマンスを期待される場合と、より良いパフォーマンスを期待される場合を実証する。
論文 参考訳(メタデータ) (2023-05-28T05:38:28Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Foundation models in brief: A historical, socio-technical focus [2.5991265608180396]
ディープラーニングをスケールアップすることで、将来のAI開発には、ファンデーションモデルが破壊的になる可能性がある。
モデルは自然言語処理やコンピュータビジョンといった分野における様々なタスクにおいて最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-12-17T22:11:33Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。